Investigation of a Transmission-Line Readout for Building PET Detector Modules

<u>Contents</u>

- 1. Introduction
- 2. Simulation Setup
- 3. Results
- 4. Summary and Plans

Heejong Kim, Univ. of Chicago

Pico-Second Workshop VII, Feb. 28, 2009

Idea of Multi-threshold sampling

- •Conventional PET DAQ. ADC for Energy CFD Discriminator for Timing
- •Pulse sampling at the pre-defined Voltage.
- Pulse reconstruction using timing readout
 →Extract Energy.

Multi timing hits on the rising edge \rightarrow Event timing.

TOP : Waveform with 20Gsps sampling. 3 M-T sampled signal superimposed. Bottom : Rising part only.

M-T board and Setup

M-T Board(left) 4 channels implemented.

HPTDC(CERN)(right) readout timing from M-T board. 8 channels with ~25ps resolution. Na-22 for coincidence source. Signal from R9800+LSO Connected to M-T board with 4 different Threshold levels. HPTDC readout through LabView.

Energy & Timing Resolution

Pulse reconstruction using M-T sampling.
4~8 points from 2~4 thresholds.
Exponential fit to falling edge.
18% Energy resolution
(~14% using 20Gs sampling waveform)

Linear fit on the rising edges. Coincidence timing resolution ~350ps

(~300ps using 20Gs sampling)

cf, "A multi-threshold sampling method for TOF-PET signal processing", NIMA, In Press(doi:10.1016/j.nima.2009.01.100)

Introduction

•Micro-Channel Plate(MCP) PMT shows fast time response. (200~500ps anode rise time, 20~50ps TTS)

•Transmission Line(TL) Board can be a efficient way to readout multiple channels.

•MCP+TL Board can be an attracting option for PET detector design.

 Sandwich configuration: MCP + LSO + MCP High Sensitivity (~80% detection efficiency) 3D positioning with resolution < ~4mm.
 <~500ps coincidence timing resolution.

•Need optimization before building proto type detector module.

•Preliminary study was done using Geant4 simulation.

MCP & Transmission line Board

Q.E ³⁰ ²⁵ ²⁰

(From Fukun's slides)

2inch square head-on MCP(Burle/Photonis). 10um, 25um pore size. Anode #: 32x32 (1.6mm pitch) 7.5x10e5 gain at 2,600V(85011-spec)

TL Board : readout MCP anodes with 32x2. \rightarrow Modified to 12x12 anodes for this simulation.

Simulation Setup(Geant4)

(not to scale)

Dimension: 51x51x33mm3

•LSO(1 pixel => 4x4x25mm3) pixelated into 12x12(left) Crystal pitch : 4.25mm

•MCP(51x51x4mm3)

Photocathode embedded in MCP.

Module = LSOs between 2MCPs.

LSO : Decay time 40ns

Lightout : 30,000/MeV 511keV two gammas at the center. 180 deg angle between two gammas. 50mm separation between two modules. Surface: "groundbackpainted" (Unified model)

Single Electron Responses

- Pulse Shape

 ~500ps rise time(top)
 (real measurement by J-F)
 similar value for falling time
 assume asymmetric gausian shape
- 2. Average gain factor : 10e6Single electron gain~70% in FWHM.
- Transit Time Spread sigma = 50ps(real measurement by J-F).

cf.

Seng's slides at Picosecond workshop at Lyon08

Signals at anodes

Simulated signal shape at anodes Beam was on the right anode. Signal is localized.

Top : Time(-10 ~ 200ns) Bottom : Time(-5 ~ 5ns)

Example : maximum signal anode and neighbor

Detect photons at photocathode. Apply Q.E of MCP Apply single electron response to photoelectron. Sum up pulse at each anode.

Data Set

5,000 events generated for each set.

1) Two gamma (along Z direction)

	Х	У
А	2.125	2.125
В	4.0	4.0
С	4.5	4.5
D	6.375	2.125

2) DOI measurement(varying Z)

Readout Scheme

- •Readout signals from 12 horizontally (vertically) running TLs.
- •Total 12x2 channels for a module.
- •Position : Maximum signal TL coordinate.
- •Energy : Sum of two sides(e.g, 3 TL sum w.r.t the maximum for each side)
- •Timing : Average of maximum TL from each side.
- •DOI : Ratio of energies from two side(or timing)

Front Side

Back Side

Detection Efficiency

TOP L: Photon Emission Spectrum detected at photo-cathode

TOP R: # of photon per event. After Q.E applied.

'# of photon > 1000' required for efficiency.

Beam position	Efficiency(%)
Α	76
В	75
С	74
D	77

12

Energy Resolution

 Beam position
 FWHM(%)

 A
 11.1

 B
 11.2

 C
 11.3

 D
 11.1

Energy distrubution of 511keV

Sum of 3 TLs signal w.r. t the maximum TL. Sum of two sides for a module.

Position Measurement

Use Anger logic with 3 highest TL's signal.
 X_{det} = Sum(Xi*Ei) / Sum(Ei) (for Vertically running TL in Front)
 Y_{det} = Sum(Yi*Ei) / Sum(Ei) (for Horizontally running TL in Back)

Beam Entering Position(X cor) B : 4.0mm C : 4.5mm

Photon(Signal) is highly localized within crystal pitchs(4.25mm).

Position resol. for coincidence event ~ 2mm

Reconstructed X coordinate.

Timing

Timing of the maximum signal TL. Apply leading edge for timing pick-up(Threshold: 20mV) Transmission time was corrected depending on position. T0: Average of two maximum TL for a module.

Time difference between T0s from two modules.

DOI measurement

•(Ef+Eb) is not dependent on DOI. Ef = Energy of Front side Eb = Energy of Back side

•Separate readout of front/back enable to use energy asymmetry.

•Energy Asymmetry : (Ef – Eb)/(Ef + Eb)*2*100(%)

•E Asymmetry vs Beam position Error bar is the spread the distribution.

Summary and Plans

•A Geant4 study for PET detector design. LSO+MCP+TL Board.

Preliminary results obtained.
 E resolution : ~12%
 Timing resolution : ~350ps
 Position resolution : ~4mm
 DOI : found tendency

- •Need more data and investigations for optimization. Crystal(LaBr), dimension, # of readout channel.
- •Try another readout scheme.
- •Validation with real tests.