

Fermilab

University

MĀNOA

HAWAI

with Micro-Channel Plate devices

THE UNIVERSITY OF

CHICAGO

Jean-Francois Genat

University of Chicago

Research Techniques Seminar Fermilab, Dec. 15th 2009

With help from

John T. Anderson, Mircea Bogdan, Dominique Breton, Gary Drake, Eric Delagnes, Henry J. Frisch, Herve Grabas, Mary K. Heintz, Edward May, Samuel Meehan, Eric Oberla, Larry L. Ruckman, Fukun Tang, Gary S. Varner, Jaroslav Va'Vra

and many others...

Jean-Francois Genat, Fermilab December 15th 2009

Introduction

Micro-Channel Plates

The fastest devices to date

timing in the pico-second range

Deep sub-micron CMOS technologies Pulse sampling at 1-10 GHz

large front-end at affordable power, room and cost

- Micro-channel Plate signals
- Associated signal processing for pico-second timing
- A 130nm CMOS sampling-digitizing ASIC

Outline

- Applications of Pico-second Timing
- Micro-Channel Plate devices

THE UNIVERSITY OF

CHICAGO

- Pico-second electronics and Waveform analysis
- Sampling Electronics
- Pico-second timing SCA in 130nm CMOS technology
- Perspective

10-100 Picosecond Time of Flight applications at HEP Colliders

Particle ID from Waveform analysis

Response to Pions

to Muons

Pion signals have shorter lifetime: shorter signals and faster rise-time

Jean-Francois Genat, Fermilab December 15th 2009

Lepton Flavor Physics

Example: Deep Underground Science and Engineering Laboratory (DUSEL) detector Double β decay, Solar neutrinos, Gravitational waves

> **100% coverage and 3D photon vertex reconstruction**. Need for >10,000 square meters at 100 ps resolution

Jean-Francois Genat, Fermilab December 15th 2009

10-100 Picosecond Time of Flight applications Medical Imaging

100ps Time of Flight:

Positron Emission Tomography [4]

 $\Delta x = c \Delta t/2$ $\Delta t=50ps, \Delta x=7.5mm$

Joel Karp

A possible TOF PET detector

Henry Frisch

Outline

- Applications of Pico-second Timing
- Micro-Channel Plate devices

THE UNIVERSITY OF

CHICAGO

- Pico-second electronics and Waveform analysis
- Sampling Electronics
- Pico-second timing SCA in 130nm CMOS technology
- Perspective

Timing-imaging Devices

Multi-anodes PMTs Dynodes

Quantum Eff. 30% Collection Fff. 90% **Rise-time** 0.5-1ns Timing resolution (1PE) 150ps $2x2mm^2$ Pixel size Dark counts 1-10Hz Dead time 5ns Magnetic field no **Radiation hardness**

Silicon-PMTs [10] Quenched Geiger in Silicon

90% 70% 250ps 100ps 50x50μm² 1-10MHz/pixel 100-500ns yes 1kRad=noisex10

Micro-Channel Plates [1] Micro-Pores

30% 70% 50-500ps 20-30ps 1.5x1.5mm² 1Hz-1 kHz/cm² 1μs 15kG good (a-Si, Al₂O₃)

Timing (and Imaging) Devices Micro-Channel Plate Detectors [1-3]

Segmented Anodes

Timing Resolution: Single Photo-electronTime Transit Spread:

 $\sigma_t^2 = \sigma_{1stgap}^2 + \sigma_{pore}^2 + \sigma_{2ndgap}^2$

The thinner the device, the better the Timing Resolution

Jean-Francois Genat, Fermilab December 15th 2009

MCP Device Simulations: first gap

Two-micron space resolution using analog charge division technique

High precision *R. Bellazzini et al. / Nuclear Instruments and Methods in Physics Research A 591 (2008) 125–128* analog measurements.

Fig. 4. A profile along a line cut across the MCP pores of Fig. 3. The spatial resolution of the readout is $\sim 2 \,\mu m$ rms, capable of resolving every single MCP pore.

Micro-Channel Plate signals

Time response curves for two models of PMT110 with different MCP pore diameters.

From Photek

11 mm diameter Micro-Channel Plate signal Signal full bandwidth: 10 GHz

Typical Timing resolution: Single Photoelectron Time Transit Spread: 10ps

2" x 2" imaging MCP (BURLE/PHOTONIS)

Data taken at Argonne

2" x 2" Micro-Channel Plate signal Signal full bandwidth: 2 GHz

30ps

Jean-Francois Genat, Fermilab December 15th 2009

MCP Signal in the frequency domain

Pico-second timing with delay lines: 2D position + time

- Delay lines readout and pulse sampling provide
 - Fast timing (2-10ps)
 - One dimension with delay lines readout 100mm- 1mm Transverse dimension can be obtained from centroids

Less electronics channels for large area sensors

 $\frac{1}{2} (t_1 + t_2) = time$ $v(t_1 - t_2) = longitudinal position$ $\sum \alpha_i a_i / \sum \alpha_i = transverse position$

Delay Line readout Position resolution

25 μ m pore MCP signal at the output of a ceramic transmission line Laser 408nm, 50 Ω , no amplification

Jean-Francois Genat, Fermilab December 15th 2009

Delay Line readout Position resolution 158 PEs HV 2.3 kV 2.4 kV 2.5 kV 2.6 kV

2 Time

Delay Line readout Position resolution

Delay Line readout Position resolution

Position resolution (velocity=8.25ps/mm):50PEs4.26ps213μm158PEs1.95ps97μm

Outline

- Applications of Pico-second Timing
- Micro-Channel Plate devices

THE UNIVERSITY OF

CHICAGO

- Pico-second electronics and Waveform analysis
- Sampling Electronics
- Pico-second timing SCA in 130nm CMOS technology
- Perspective

Timing resolution [5]

$$\sigma_t = \sigma_x / \frac{dx(t)}{dt}$$

Time spread proportional to 1/rise-time and noise

Jean-Francois Genat, Fermilab December 15th 2009

Timing techniques

Constant fraction [6]

Measure pulse amplitude: threshold at a given fraction a delayed version of the pulse

3-parameter (at least !) technique

- Absolute Threshold
- Fraction threshold
- Delay

Analog delay difficult to integrate (cable in most implementations)

Multi-threshold

Multi-threshold: sample several times over thresholds

Best results:

- Number of thresholds 4-8
- Thresholds values
- Order of the fit:

equally spaced 2d order optimum

Digital Waveform Analysis

Methods compared (simulation) [11]

zoom

Time resolution vs Number of photo-electrons

Jean-Francois Genat, Fermilab December 15th 2009

Picosecond Digital Electronics for Micro-Channel Plate Detectors

Store the full detector information as with a digital oscilloscope:

- Detector + electronics noise >> quantization noise (LSB/ $\sqrt{12}$)
- Sampling frequency > 2 x full Analog Bandwidth (Shannon-Nyquist)

Digitize on the fly, if the two above conditions can be fulfilled. If not, loss of precision due to A/D conversion and/or loss of timing information

Picosecond Digital Electronics for Micro-Channel Plate Detectors

A/D state of the art:

8-bit 1GS/s 10-bit 300 MS/s 16-bit 160 MS/s

Need at least 5 GS/s sampling rate, 10-12bit There is no !

Fast analog storage

and slower digitization, if rate allows, or dead-time acceptable

Apply the best timing algorithm suited to the detector, get the charge for free ... !

Fast analog storage [7-9]

Example:

Analog 5 GS/s analog storage, ADC 8-ch 12-bit 80 MS/s (AD9222-80) Ok up to 2% occupancy

Internal Analog buffer

- Use other channels on-chip with a fast input multiplexer

or

Jean-Francois Genat, Fermilab December 15th 2009

Sampled Micro-Channel Plate signals

Assume: a typical noise at 1mV (detector+system) LSB set to 1mV for a 1V dynamic range (quantization noise 300μV), 50-200ps rise-time

10 bit, 2.5-10 GHz full analog bandwidth > 5-20 GS/s sampling rate

Readout electronics

Deep sub-micron CMOS ASICs:

) faster: larger analog bandwidth, sampling rate

- improved radiation hardness
- cheap, 1-10\$/ch

less dynamic range

Outline

- Applications of Pico-second Timing
- Micro-Channel Plate devices

THE UNIVERSITY OF

CHICAGO

- Pico-second electronics and Waveform analysis
- Sampling Electronics
- Pico-second timing SCA in 130nm CMOS technology
- Perspective

Fast Sampling Electronics

- Integration in custom ASIC for large scale detectors ~ 10⁴⁻⁶ channels,
- Self or external trigger,
- Low power,
- Full digital (serial) interface,
- High reliability and availability,
- Low cost.

Sampling Chips

		Sampli GS/	ing s	Bandwidth GHz	Dyn. range bits	Depth	PLL	ADC bits	Trigger	Techno
G. Varner	(Hawaii) [9]	6	1.0	10	1024	no	12	experience	.25µm
S. Ritt	(PSI)	[8]	6	.8	11.5	256	3.9p	os no	no	.25µm
D. Breton/E. Delagnes		2.5	.5	13.4	250	20p	os no	no	.35µm	
(Orsay/Saclay) [7]										

ASIC Deep Sub-Micron (< $.13\mu m$) CMOS processes allow today:

Sampling:	10-20 GHz				
Bandwidth:	> 1.5 GHz				
Dyn. Range:	10bit				

Sampling Chips Survey

	Hawaii	Varner		Saclay/Orsay	Delagnes/	Breton		PSI	S.Ritt	This proposal
	Blab1	Lab1-2	Lab 3	Hamac	Matacq	Sam	Planned	DRS3	DRS4	
Sampling	100 MHz-6 GHz		20 MHz-3.7GHz	40 MHz	0.7-2.5 GHz	0.7-2.5 GHz	10 GHz	10 MHz-5 GHz	5 GHz	10-20 GHz
Bandwidth (3db)	300 MHz		900 MHz	50 MHz	200-300 MHz	300 MHz	650 MHz	450 MHz	950MHz	> 1.5 GHz
Channels	1	8	9	8	1	2		12 6 2 1	8421	4 16
Triggered mode	Yes		Common stop		Yes			Common stop	Common stop	Channel trigger
Resolution	10 bit			13.3 bit	13.4 bit	11.6 bit		11.6 bit	11.5 bit	8-10-bit
Samples	128 rows of 512	256	256	144	2520	256	2048	1024-12288	1024-8192	256
Clock			33 MHz	40 MHz	100 MHz				fsamp/2048	20-40 MHz
Max latency	560 us	2.2ms	50us							
Input Buffers	Yes			Yes	Yes	Yes	No	No	No	No
Differential inputs	No	No	No	Yes	Yes	Yes		Yes	Yes	Yes
Input impedance	50 Ohms	50 Ohms	50 Ohms Ext	10 MOhm/3pF	50 Ohms				11pF	50 Ohms
Readout clock	500 MHz			5 MHz	5 MHz	16 MHz		33 MHz	33MHz	500 MHz
Locked delays	Ext DAC	Ext DAC	Ext DAC			Yes		Ext PLL	Int PLL	Int PLL
On-chip ADC	12-b +500MHz TDC			No		No		No	No	Yes
R/W simultaneous	Yes			Yes		No		No	Yes	No
Power/ch	15mW/1.6W			36 mW	250-500 mW	150 mW		2-8mW	7.2mW at 2GS/s	
Dynamic range	1mV/1V			0.26mV/2.75V	175 uV-2V	0.65mV-2 V		0.35mV/1.1V	.35mV/1V	1V
Xtalk	Inter-rows 0.1%		10%			0.30%		< 0.5%		
Sampling jitter			4.5ps			25ps			6ps	?
Power supplies	-tbd/+2.5	-tbd/2.5V	-tbd/2.5V	-1.7/3.3V				2.5V	2.5V	1.2V
Process	TSMC .25	TSMC .25	TSMC .25	HP/DMILL .8	AMS .8	AMS .35	AMS .18	UMC .25	UMC .25	IBM .13
Chip area	5.25 mm2	10 mm2	2.5mm2	19.8mm2	30mm2			25mm2		1mm2/ch
Temp coeff	0.2%/°C		0.2%/°C					5e-5/°C	25ppm/∘C	
Cost/channel	500\$/40 10\$/2k								10-15\$	

Existing ASICs: Labrador 3 [9]

250nm CMOS

Waveform Digitizing Chip DRS4 [8]

• UMC 0.25 μ m rad. hard

- 9 chn. each 1024 bins, cascadable up to 8192
- Sampling speed 0.2 ... 5 GS/s
- Bandwidth 950 MHz
- 17.5 mW/chn @ 2.5V
- On-chip PLL stabilization
- Readout speed using ext. ADC: 30 ns * n_{samples}
- SNR: 69 dB calibrated
- Aperture jitter:
 4 ps at 5 GS/s calibrated

250nm CMOS

Jean-Francois Genat, Fermilab December 15th 2009

The SAM (Swift Analog Memory) ASIC [7]

D. Breton/E. Delagnes Orsay/Saclay

6000 ASICs manufactured, tested and delivered in Q2 2007

- 2 differential channels
- 256 cells/channel
- BW > 450 MHz
- Sampling Freq 400MHz->3.2GHz
- High Readout Speed > 16 MHz
- Smart Read pointer
- Few external signals
- Many modes configurable by a serial link.
- Auto-configuration @ power on
- AMS 0.35 µm => low cost for medium size prod

Outline

- Applications of Pico-second Timing
- Micro-Channel Plate devices

THE UNIVERSITY OF

CHICAGO

- Pico-second electronics and Waveform analysis
- Sampling Electronics
- Pico-second timing SCA in 130nm CMOS technology
- Perspective

130nm CMOS Sampling ASIC

This chip is developed by U-Chicago and U-Hawaii

It includes

- 4 channels of full sampling (256 cells)
- 1 channel of sampling cell to observe the sampling window

Test structures:

- Sampling cell,
- ADC Comparator,
- Ring Oscillator

Sampling ASIC

- Prototype chip in 130nm CMOS technology (IBM 8RF-DM)
- 4-channel sampling, >10-15GSa/s
- 1-2 GHz analog bandwidth, 50 Ohms
- 40-80 MHz clock
- 256 cells (<100ps/cell, 12.5-25ns range)
- Free running delays (no PLL)
- Sampling window 500ps-2ns
- Dynamic range .7V
- Crosstalk <1%
- On-chip parallel 12-bit ADC (2 μs min conversion time)
- Free running delays (No PLL)
- Linearity < 1% on the full dynamic range
- Read clock up to 50 MHz (one cell/period, 22 μs total readout time)
- One reference channel (sampling window)
- 1.2V power supply
- Power < 40 mW/channel
- Process IBM 8RF-DM (130nm CMOS)
- 4 x 4 mm²

Chicago-Hawai'i

Sent July 2009, received Oct 21st

Sequence of operations

-1 Write: The timing generator runs continuously, outputs clock phases 100ps spaced. Each phase closes a write switch during one sampling window.

- -2 A/D conversion after a trigger that opens all the write switches and starts all A/D conversions in parallel Data available after 2 μs (2GHz counters)
- -3 Read occurs after conversion (data can still be taken as in Phase 1)

Block diagram

10 GS/s Timing Generator

Timing Generator Voltage Controlled Delay Cell

- 256 voltage controlled delay cells of 100-200ps
- 20-40 MHz clock propagated

Voltage Controlled Delay Cell

Test structure: Ring Oscillator: Two delay cells + inverter

Sampling Cell

Analog bandwidth and Sampling window

Sampling window = Number of switches closed at a time x sampling period

Sampling Window₁₀₋₃ = $-\log(10^{-3})$ x rise-time / 2.2= 1/ 3 dB Analog Bandwidth

In practice, R_{in} and C_{store} are minimum, but limited by the stray capacitor of the switch, and the leakage current of the switch in the open state.

Sampling cell design

Jean-Francois Genat, Fermilab December 15th 2009

Sampling Cell

Sampling Capacitance 70fF Switch resistance: $1.5k\Omega$ Analog bandwidth 1.5GHz

ADC

Wilkinson:

All cells digitized in one conversion cycle

- Ramp generator
- Comparators
- Counter
- Clocked by the ring oscillator at I-2 GHz

Layout

One channel

CMOS 130nm IBM 4 x 4 mm²

Pictures

Received October 21st 2009

Die to be bump-bonded on PCB

Jean-Francois Genat, Fermilab December 15th 2009

Tests

- First tests of packaged chips (presented here)
 - DC power vs biases,
 - Sampling cell response vs input
 - ADC's comparator
 - Leakages (voltage droop)
 - Digital Readout

- Fine tests to come... (chip is just being bump-bonded to PCB)
 - Analog bandwidth
 - Resolution, signal-to-noise
 - Sampling cell response vs sampling window
 - Crosstalkk
 - Max sampling rate
 - Full ADC
 - Linearities, dynamic range, readout speed

Tests: Sampling cell

Measurements

Simulation/Measurements

Ok, except a saturation for voltage inputs > 750 mV Very close to simulation

Tests: Sampling cell Leakages

- 1 input LOW, write switch CLOSED
- 2 input HI, switch CLOSED
- 3 input HI, switch OPEN
- 4 input LOW, switch OPEN 1.4 1.2 Leakage current is 7 pA 1 Much smaller than in simulation

Tests: Ring Oscillator

Tests: Digital readout

Token passing readout to multiplex the 1024 data words onto the output bus

Tests Summary

Test structures measured as expected from simulations in terms of:

- Dynamic range:

Sampling cell runs ok within 0-700mV as simulated

- Speed:

Ring Oscillator up to 1.5 GHz

- Readout logic ok

One problem with I/O pads:

DC path to ground through protection diodes, but I/O's can be easily overdriven.

Full sampling channels have still to be measured

Next Design

- Measure and fully understand the first version
- Test with actual MCP signals for pico-second timing
- Include:
 - Input trigger discriminator
 - Phase lock (Temperature, voltage supply, process)
 - Increase the dynamic range to 1V
 - Improve the analog bandwidth to 2GHz
 - Increase the sampling rate up to 20 GS/s
 - Improve the readout frequency to 8 x 40 = 320 MHz
- 130nm CMOS runs at MOSIS: Feb 1st, May 10th

20 GHz Timing generator [12]

To switched capacitor array

Outline

- Applications of Pico-second Timing
- Micro-Channel Plate devices
- Pico-second electronics and Waveform analysis
- Sampling Electronics
- Pico-second timing SCA in 130nm CMOS technology
- Perspective

Perspective

• The 4-channel 130nm CMOS ASIC:

First tests ok, more test results to come shortly...

- Next chip : Upgrade with channel discriminator, internal PLL, improve analog bandwidth, sample rate, multi-gain input stages (QIE-like)
- Other ASIC design at the University of Chicago:

An integrated Front-End for the Hadron Tile Calorimeter upgrade at ATLAS Include: 3-gain input stage, Integrator, 12-bit ADC

130nm CMOS OK for these designs so far.

Latest technologies (90nm) are faster , but require multi-gain to cope with the reduced voltage supply range:

Multi-gain switched capacitor arrays ?

References

[1] J.L. Wiza. Micro-channel Plate Detectors. Nucl. Instr. Meth. 162 (1979) 587-601.

[2] K. Inami, N. Kishimoto, Y. Enari, M. Nagamine, and T. Ohshima. Timing properties of MCP-PMT. Nucl. Instr. Meth. A560 (2006) 303-308., K. Inami. Timing properties of MCP-PMTs. Proceedings of Science. International Workshop on new Photon-Detectors, June 27-29 (2007). Kobe University, Japan.

[3] J. Va'vra, J. Benitez, J. Coleman, D. W. G. Leith, G. Mazaher, B. Ratcliff and J. Schwiening. A 30 ps Timing Resolution for Single Photons with Multi-pixel Burle MCP-PMT. Nucl. Instr. Meth. A572 (2007) 459-462.

[4] H. Kim et al. Electronics Developments for Fast Timing PET Detectors. Symposium on Radiation and Measurements Applications. June 2-5 (2008), Berkeley CA, USA.

[5] An extensive list of references on timing measurements can be found in: A.Mantyniemi, MS Thesis, Univ. of Oulu, 2004; ISBN 951-42-7460-I; ISBN 951-42-7460-X;

[6] S. Cova et al. Constant Fraction Circuits for Picosecond Photon Timing with Micro-channel Plate Photomultipliers. Review of Scientific Instruments, 64-1 (1993) 118-124.

[7] E. Delagnes, Y. Degerli, P. Goret, P. Nayman, F. Toussenel, and P. Vincent. SAM : A new GHz sampling ASIC for the HESS-II Front-End. Cerenkov Workshop (2005), and NIM A, Volume 567, Issue 1, p. 21-26, 2006
[8] S. Ritt. Design and Performance of the 5 GHz Waveform Digitizer Chip DRS3. Nuclear Instruments and

Methods, (2007).

[9] G. Varner, L.L. Ruckman, A. Wong. The First version Buffered Large Analog Bandwidth (BLAB1) ASIC for high Luminosity Colliders and Extensive Radio Neutrino Detectors. Nucl. Inst. Meth. A591 (2008) 534.

[10] G.Bondarenko, B. Dolgoshein et al. Limited Geiger Mode Silicon Photodiodes with very high Gain. Nuclear Physics B, 61B (1998) 347-352.

[11] J-F Genat, G. Varner, F. Tang and H. Frisch. Signal Processing for Pico-second Resolution Timing Measurements. Nuclear Instruments and Methods, (2009).

[12] J. Christiansen . An Integrated CMOS 0.15 ns Digital. Timing Generator for *TDC's* and Clock Distribution. Systems, IEEE Trans. Nucl. Sci., Vol. 42, No4 (1995), p. 753

Thanks for your attention !