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Fast detectors, fast signals

Detector Signals:

Moving charges (in an electric field):

' Bias :__: |
1= n(t) g v(Y oo ﬁ |
Rise-time i"(=q[n(®) v'(t) + () v() |
|
Maximize |‘ 1
n electron multiplication PMTs, MCPs

dv/dt gE/m electric field (in vacuum)

dn/dt  primary ionisation, multiplication

v t.gE/m electric field - Vacuum devices
- Electron multiplication
- Low capacitance
- High electric fields
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Fast detectors

Sub-nanosecond: 10-100 ps rise-time
Fast
Signals Rise-time Time resolution
Solid state
APDs 102 300 ps 50 ps
Silicon PMs 107 700ps 200 ps
3D Silicon 104 500ps ?
Very fast
Multi-anode/mesh PMTs 107 200ps 50 ps
MCP PMTs 106 150 ps  20-30 ps
Multi anodes MCP PMTs 30 ps? 1 ps?
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3D Silicon detectors vs Planar

3D versus planar detectors (not to scale)
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MCP PMT single photon signals
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Actual MCP PMTs signals  MCP PMTs segmented anode signals simulation

K. Inami et al tts = 860 fs
Univ. Nagoya :
Tr = 500ps M. Sanders & H. Frisch,

tts= 30ps Univ. Chicago, Argonne

N photo-electrons improves as + N
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Fast timing

Electronics gain-bandwidth should match:

- Detector sensitivity
- Detector rise-time

Example:  Multi-anodes MCP PMTs:

Rise-time: 25ps
Corresponding Bandwidth: 15 GHz
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Effects of amplitude, rise-time

2F Same amplitude, different rise-times
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Amplitude and/or Rise-time spectra translate into time spread
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Effect of noise

Time spread proportional to rise-time
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Leading edge

noise
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Effects of noise

Time spread proportional to rise-time
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Other effects

-TF Walk effect: Same instant ower threshold, .
Different slope

T
m
1

1
o 10 20 30 40 a0 21l /1 il 0 100
ps

Walk:  Discriminator delay depends on slope across threshold
———— (detector rise-time @ amplifier)
Use appropriate (gain x bandwidth) technology
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Zero crossing

B Use zero-crossing of signal derivative

Detects signal's maximum
Derivative Zero-crossing Delay

D

Trigger threshold }

Q/ Reject HF noise from signal derivative

delay

Signal —

A
A 4
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Double Threshold

E High Threshold to trigger

B Low threshold to time Lo thresh
> Delay
Signal

A Hi thresh }
[\
N\

»  Avoids noise on low threshold
Decision on very first signal rise

A
-

v

\
delay
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Constant Fraction

If rise-time proportional to amplitude, use constant-fraction

A A

1 Constant
. fraction
——— Leading
edge .— Leading
/ edge
; / =
[ — OK - Leading edge errors
If no rise-time dependence If pulse shape independent of

with amplitude. Leading edge OK amplitude, use Constant fraction
But detector presumably
saturated, and slown down |
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Leading Edge vs CFD

Jean-Francois Genat, Fast Timing Workshop, March 8 2007, DAPNIA, Saclay



Constant Fraction

Three main parameters:

B Trigger threshold
E Delay
B Fraction

Maximize slope at zero-crossing
Carefully optimize wrt signals properties

H. Spieler [IEEE NS 29 June 1982 ppl1142-1158 ]
T.J. Paulus [TEEE NS 32 June 1985 pp 1242-1249]
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Leading edge + ADC

* If peak amplitude is measured, leading edge can
be compensated off-line

Results compare with CFD technique (IEEE NSS 2006 San
Diego)

Jean-Francois Genat, Fast Timing Workshop, March 8t 2007, DAPNIA, Saclay



Pulse sampling

Digitize samples over pedestal and signal
Fast analog sampler + ADC: [E. Delagnes, Saclay, this workshop]

Assuming the signal waveform is known from the detector and electronics
properties:

— Least square fit yields:

Amplitude
Time

| Tterate with new values until convergence
LSQF: [W.E. Cleland and E.G. Stern. NIM A 338 pp 467-497]

 All samples contribute to timing estimation
Very robust to noise
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Pulse sampling

sampled measurement and reference
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MATLAB Simulation with Silicon signals

Better compared to CFD by a factor of two depending
on noise properties and signal waveform statistics

- MATLAB simulation package (JFG)
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System issues

Drifts due to environmental conditions

Power supplies drifts and noise
Cables/fibers instabilities

- Cable has shorter group delay, and even
higher bandwidth, may pick-up noise

- Micro-coax makes a come-back
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Time to Digital Coding

B "Coarse" (<1GHz) time coding use counters
B "Fine"” (1-1000ps) time coding uses either

Time to Amplitude coding and ADC
or Digital delay lines phased locked on clock (DLL)

Both techniques can be differential or not
If short time range only is required, single TAC or DLL OK.
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Architecture

Start Stop
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Fine timing: Time to Amplitude
Converter

E A voltage ramp is triggered on 'Start’, stopped on "Stop”
Stop can be a clock edge

E Amplitude is coded with a conventional ADC

A

To ADC
0
— > ADC Start | 5

v

A

Stop
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Differential TAC

Différential:

Same as above, ramp goes up at ratey,, down at rate v, <<,

L V :
Time is stretched by —~ , measured using a regular counter

VZ R
%% 2 -

Resolution: a few ps — To Counter
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Fine timing: Digital Delay Lines

- Locked ring oscillator
Loop of voltage controlled delay elements locked on a clock.

- Generation of subsequent logic transitions distant by 7.
T can be as small as 10-100 ps

Time arbiter

Clock
Delay + time offset controls L

S e W

v v v v v

N delay elements =

Total delay N tis in the range of half a clock period
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Digital Delay Lines: DLL

Delay locked loop

Delays control N delay elements t

P — dl pa %

g T 1

Time arbiter

Clock feeds the digital delay line
Phase arbiter locks delays on clock period

[M. Bazes TEEE JSSC 20 p 75]
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Phase noise

Due to any analog noise source in the oscillator (thermal, 1/f..)
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Atomic Clock Chip

Courtesy: NIST

A few mm3

The 'phpzics package' of the chip-scale atomic clock includes
[frormn the botkom] a laser, a lens. an optical atkenuator to reduce
the laser power, a waveplate that changes the polarnzation of
the light. a cell contairming a wapor of cesium atoms, and [on
top] a photodiode to detect the lazer ight tranzmitted through
the cell. The tiny gold wires provide electrical connections to
the electronics far the clock.



Stability

Short time stability: <ls
Long term > 1s

Hydrogen: 1fs/s

Stabilite d'une Horloge atomigue a Hydrogene

Felative
Stability

-16 1 L 1 vl 1 1 vl 1 o1l

10° 10° 10° 10°
Timescale seconde



Phase lock

P
Clock /

DLL output | \

Phase arbiter

Delay control —
Lag Lag Lead OK

Feedback can be analog (RC filter) or digital using the TDC
digital response itself
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Delay elements

Active RC element: R resistance of a switched on transistor
C total capacitance at the connecting node

Typically RC = 1-100 using current IC technologies

o

S e

N delay elements t

oy =0+N o is technology dependent: the fastest, the best !

Withinachip o~ 1 f° [Mantyniemi et al. IEEE JSSC 28-8 pp 887-894]
a wafer o~ 5-10%

a lot c ~ 10-20%
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Time controlled delay element:
Starved CMOS inverter

N
Delay controls /
through gates " PMOS
voltages _
_ | | _B=A
N
«  NMOS
*
L

Propagation delay 7t ~ 10-100 ps

CMOS Technology 90nm: 1>~ 20 ps
45nm < L < 250nm :

20

1>
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e,
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Bin size histogram for 256 bins from 4 chips.

picosecond

100ps TDC 0.6 um CMOS (1992)

65 nm in production today
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Time arbitration

SR flip-flop in the "forbidden” state (8 transistors)

Y—DO_Q

T
R )O__Q

Final state depends upon first input activated:

Rprior S: Q=1,Q=0

R after S: 6:0, Q=1

M oa 6y
............... . B=sps
| | | | |
& ¢ 100 150 200
Ai=8p
At=7ps
| | ! ] ]
Q 30 140 150 200

Issue: metastable states if
S and R "almost” synchronous
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Time arbitration

T

Y1 —

Inl {

] [
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Six transistors implementation in CMOS

[V. Gutnik et al. MIT IEEE 2000 Symp. on VLSI Circuits]

i>7¢

i\ 6ps
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Same metastability issues
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Differential Delay Lines Time Vernier

Fast Stop, catches slow Start
Time quantum t,-t, as small as technology spreads allow

S
I

—Q

—qq 94 +— 92

To <1 SR

N cells

LE
4| | | ™~ ?__
Stop | | | ||

number of bits for 3 LSB precision
ull-scale (maximum time interval to be measured)

1 =
NbitZELng(T/O-) T - f
o = delay elements spread
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Differential Delay Lines Time Vernier

Work for DELPHI (LEP) Outer Detector (1984):

500 ps binning, 150ps resolution TDC using digital delay lines
2 um Gate Array technology

This work scaled today : 150 ps x 65nm / 2000nm = 4.8 ps
Digital delay lines:

Very short coding delay (no stretch, no ADC delay)



Multipulse Time Vernier

Multipulse version: - Generate vernier references at any time
- Arbiter with incoming start and stops

Clock propagated fl
e T
L
e i
L

J. Christiansen (CERN)
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Picosecond chips

Digital

Vernier delay lines offer 5-100 ps resolution for multi-channel chips
Full custom: 25ps J. Christiansen, CERN
8ps  J. Jansson, A. Mantyniemi, J Kostamovaara, Olou Univ Finland
Analog
B 10ps TAC chip available from ACAM (2 channels) if channel rate < 500 kHz,
40ps @40 MHz

E  Analog full-custom chips: Argonne is designing disc + TAC full-custom chips for 1 ps
in SiGe 250nm HBT technology
[F. Tang, this workshop]
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Picosecond electronics

* Picosecond resolution hardware

The TCSPC Power Package SPC-134

Four-Channel Time-Correlated Single Photon Counting Module

Four Fully Parallel TCSPC Channels

Ultra-High Data Throughput

Overall Saturated Count Rate 40 MHz

Channel Saturated Count Rate 10 MHz (Dead Time 100ns)
Dual Memory Architecture: Readout during Measurement
Reversed Start/Stop: Repetition Rates up to 200 MHz
Electrical Time Resolution down to 8 ps FWHM / 5 ps rms
Channel Resolution down to 813 fs

Up to 4096 Time Channels / Curve

Measurement Times down to 0.1 ms

Instrument Software for Windows 2000 / NT / XP

Direct Interfacing to most Detector Types

Single Decay Curve Mode

Oscilloscope Mode

Segential Recording Mode

Spectrum Scan Mode with & Independent Time Windows
Continuous Flow Mode

FIFO / Time Tag Mode for FCS, FIDA, FILDA, BIFL

Becker & Hickl
Germany

5ps rms @ 200 MHz
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Some Costs

B Becker & Hickl SPC 134 4-channel 1ps CFD +TDC system 7 kEuros/ch
E ACAM TDC-GPX 2-channel 10-30ps TDC chip 80 Euros
E ORTEC 935 4-Channel 30ps CFD NIM
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CMOS Technologies

CMOS
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CMOS from 90 to 45 nm technology nodes (ITRS 2005)
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Technologies

SiGe HBTs 220 GHz MPW from IHP IBM

Ned Spencer (UCSC) LHC [Perugia FEE 2006]
Fukun Tang (Univ Chicago)  Picosecond timing [this workshop]

2003 to 2008 Technology Positionng

—

arra alized Porferm in:n':”'
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Clock frequency (GHz)

ITRS from 2003 to 2008 (2005)
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3D imaging using fast Timing with
APDs array

C. Niclass et al. [EPF Lausanne, Switzerland, 2006]

Close to SiPM devices (Geiger mode, self-quenching by pulse
current avalanche through MOS transistor)
On chip readout electronics

- tts from APDs < 50 ps

- Overall 300 ps resolution (TDC dominated) resulting in a 1.8mm
spatial resolution using 102 to 10* points
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it i i b= 1]

Human face depth map and profile {in mm)
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Today, 10 ps is integrated
1 ps under work, looks promising from very fast VLSI technologies

The End
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