PET, TOFPET & SPECT

Chin-Tu Chen Chien-Min Kao, Christian Wietholt, Qingguo Xie, Yun Dong, Jeffrey Souris, Hsing-Tsuen Chen, Bill C. O'Brien-Penney, Patrick J. La Riviere, Xiaochuan Pan **Department of Radiology & Committee on Medical Physics Pritzker School of Medicine & Division of Biological Sciences** The University of Chicago

PET Principle

Biochemical Imaging with Small Animals

Human PET: 3-4mm; Target: 1-2mm Animal PET: 1-2 mm; Target: <0.5mm

Investigation of Scatter in PET Using SimSET

••• Effect of scatter on image

Trues Raw Raw = Trues + Scatter

••• Effect of scatter on image

••• TFF vs. object shape

\

\

thin phantom 10% energy resolution

Thin phantom in the large scanner

LLD = 150 keV

LLD =

350 keV

\

Obese phantom in the small scanner

LLD = 150 keV

LLD =

350 keV

\

Dual-Head microPET Prototype SimSET

Sensitivity

\

••• Flexible Configuration

Example Reconstruction

25.2 cm

Noisy data

Time-of-Flight Tomograph

• Can localize source along line of flight - *depends on timing resolution of detectors*

• Time of flight information can improve signal-to-noise in images - weighted backprojection along line-ofresponse (LOR)

 $\Delta x =$ uncertainty in position along LOR = $c \cdot \Delta t/2$

Karp, et al, UPenn

Benefit of TOF

Better image quality Faster scan time

5Mcts TOF • 5Mcts 1Mcts TOF • 1Mcts

Karp, et al, UPenn

Questions

- Smaller CW reduces randoms, scatter, and trues, at different rates. Is it beneficial to employ CWs much smaller than those currently being used, even though it is much smaller than the object size?
- In detector design, one could make a compromise between timing resolution and other performance characteristics such as energy resolution. Therefore: In TOF-PET imaging, is it possible to trade energy resolution for timing resolution in such ways not diminishing, or even leading to improved, image quality?

Methods

♦ GATE Simulation

✤ PET:

- 82.5 cm ring diameter, 16.2 cm axial length
- 24 transaxial rings made of 6.45×6.45×25mm³ LSO crystals
- 1mm thickness and 66.5mm length septa
- ~60 cm diameter FOV
- Phantom:
 - 40cm diameter, 16.2cm height cylinder
 - containing uniform activity of ~6.3KBq/cc

Data generation: Perfect timing and energy resolution single events were generated by GATE. We then re-sampled the arrival times and detected energies of the simulated single events with Gaussian distributions to obtain specific energy resolutions (ER) and timing resolutions (TR). Various coincidence windows (CWs) are applied to obtained coincidence events.

Results

CW	$600\mathrm{ps}$		$1\mathrm{ns}$		$1.4\mathrm{ns}$		$2\mathrm{ns}$	
system	better- T_r	better- E_r	better- T_r	better- E_r	better- T_r	better- E_r	better- T_r	better- E_r
SF	25.4%	19.7%	26.7%	20.2%	27.4%	20.6%	27.6%	20.8%
RF	8.6%	6.8%	10.4%	7.8%	12.9%	9.4%	17.3%	12.4%
$NEC(\times 10^8)$	8.308	7.372	1.056	1.001	1.100	1.099	1.053	1.095

Table 1: Detection performance of two systems when employing various CWs (better- T_r system: $E_r = 30\%$, $T_r = 300 \text{ ps}$; better- E_r system: $E_r = 10\%$, $T_r = 700 \text{ ps}$).

- ✤ SF is larger with the 300ps TR, 30% ER case.
- RF increases with the coincidence window
- ✤ NEC reaches maximum at CW~1.4ns

Table 2. TR300ps	s-ER30% vs. TR7	00ps-ER15% with	CW600ps,1000	ps,1400ps,2ns,4r	าร
------------------	-----------------	-----------------	--------------	------------------	----

	т		S R		SF		RF		NEC(T*T/(T+S+R))			
	TR 300ps	TR 700ps	TR 300ps	TR 700ps	TR 300ps	TR 700ps						
CW 600ps	1193024	971741	407812	238162	112423	70961	0.254749	0.196844	0.086118	0.068055	830759.5	737221.6
CW 1000ps	1563243	1339122	569126	338889	181539	114119	0.266898	0.201959	0.104047	0.078527	1056105	1000624
CW 1400ps	1678664	1498403	633214	388928	248906	155543	0.273896	0.206073	0.129129	0.094044	1100410	1099046
CW 2000ps	1673307	1538692	636742	404497	349924	218476	0.27564	0.208161	0.172953	0.124334	1052626	1095254
CW 4000ps	1617618	1486504	615967	390694	672932	419189	0.275775	0.208126	0.293786	0.219967	900283.1	962248.1

Results

Fig.1(a,b,c) Profiles of the trues (T), scatter (S), and randoms (R) profiles obtained for TR=300ps, ER=30%, using CW=600ps or 4ns. All time bins are summed and these profiles correspond to the non-TOF case. The coincidence window is observed to affect spatial distributions of trues and scatter. The spatial distribution of the randoms remain spatially uniform with both coincidence windows.

Results

Figure (b) S events

Figure 1(c) R events

Reconstructed Image

◆ **Reconstruction:** the EM algorithm, 50 iterations, with attenuation correction and smoothing introduced during iteration

Cases considered:
 NON-TOF PET: CW=4ns

• TOF-PET: CW=600ps, 1ns, 1.4ns, 2ns

Images are obtained by using

- trues only (T images)
- trues+scatter (T+S images)
- trues+randoms (T+R images)
- trues+scatter+randoms (T+S+R images).
- subtraction of T images from T+S images (S images)
- subtraction of T images from T+R images (R images)

Central intensity profiles of images obtained with System 1

CW	$600\mathrm{ps}$		1 ns		$1.4\mathrm{ns}$		$2\mathrm{ns}$	
system	better- T_r	better- $\!E_r$	better- T_r	better- E_{r}	better- T_r	better- E_{r}	better- T_r	better- E_{r}
Т	1.84	1.62	1.86	1.63	1.88	1.67	1.87	1.59
T+S	1.82	1.47	1.81	1.46	1.76	1.47	1.79	1.43
T+R	2.28	1.74	2.17	1.73	2.17	1.76	2.23	1.67
T+S+R	2.35	1.74	2.40	1.77	2.36	1.82	2.39	1.75

Table 2: Gains in the ROI SNR achieved by two systems (better- T_r system: $E_r = 30\%$, $T_r = 300$ ps; better- E_r system: $E_r = 10\%$, $T_r = 700$ ps) when employing various CWs and reconstructed by using the EM algorithm. The data either contains true events only (T), true and scatter (T+S), true and randoms (T+R), or all event types (T+S+R). Generally, the best SNR gain was obtained with the better- T_r system when employing 1 ns CW.

Single-Photon Radionuclides

$T_{1/2}$ γ	or x-ray	abundance
	(keV)	
5.3 days	81	0.38
6.0 hrs	140	0.89
2.8 days	171	0.90
	245	0.94
13 hrs	159	0.99
3.3 days	92	0.38
	184	0.23
	300	0.16
	T _{1/2} γ 5.3 days 6.0 hrs 2.8 days 13 hrs 3.3 days	$\begin{array}{ccc} & \gamma \ or \ x-ray \\ & (keV) \\ 5.3 \ days & 81 \\ 6.0 \ hrs & 140 \\ 2.8 \ days & 171 \\ & 245 \\ 13 \ hrs & 159 \\ 3.3 \ days & 92 \\ & 184 \\ & 300 \end{array}$

Ga-67 Citrate Tc-99m HDP In-111 Prostascint

Triple-Head SPECT Scanner

collimators

phantom

Super-Resolution Imaging (J. Meng, UIUC) Single-Photon Emission Microscopy (SPEM)

A New Photon Sensor – Electron Multiplying Measurements with Fiber Optic Coupling Charge-coupled Devices

The Very-high Resolution Gamma Camera

EMCCD camera with fiber taper and columnar-grown CsI(Tl) scintillator

- EMCCD sensor: E2V L3Vision CCD97, back illuminated frame transfer device.
- CCD Resolution: 512×512 pixels, 16×16 micron².
- Maximum readout speed: 10MHz, ~30 f/s at full frame.
- Actual optical pixel size: 24×24µm² (with 1.5:1 fiber taper).
- TE cooling to -40°C.
- Typical operating EM gain: ~300.
- Scintillator used: columnar CsI(Tl) phosphor (Hamamatsu ACS HL,

Spatial Resolution for Planar Imaging Case

Basic Configuration:

- Readout sensor: Electron Multiplying Charge Coupled Device (EMCCD).
- * DM tube gain: 1 p.e. \rightarrow ~60 photons
- Overall DM ratio: 6:1
- Overall detector active area: ~5x5 cm².
- Conversion material: CsI(Tl), Gadox or other scintillation material.
- Rely on light sharing between CCD pixels to achieve a very high spatial resolution (typically <60µm FWHM).
- Used with multiple micro-pinholes, typically 100µm diameter.

Experimental Setup

- Detector active area: ~5×5cm²
- Collimator: single pinhole aperture.
- Pinhole diameter: 100µm.
 - Source-to-pinhole distance: ~2cm.

- Pinhole-to-detector distance: ~2cm.
- Reconstruction with standard MLEM.
- Source plane: 512×512 pixels, pixel size: 32×32µm².

Super-Resolution Imaging Single-Photon Emission Microscopy (SPEM) **Reconstructed Mouse Thyroid Image**

Measured Intrinsic Spatial Resolution

EMCCD Binning	Readout Frame Rate (fps)	Optical Pixel Size (µm)	FWHM (µm)	FWTM (µm)
EMCCD only	32	24	35	
512×512	32	96	60	123
256×256	54	192	92	190
128×128	95	384	109	227

Measured line-spread functions with different binning

Total activity: 500µCi.

Measuring time: ~1 hours Pinhole diameter: 100 µ

100µm pinhole

300µm pinhole

1-d profile of cutting through the four spheres on the right hand side

220

100µm

ĩ.

Pixel No.

240

250

280

Physical boundary of sour

200µm

200

180

Measured spatial resolution <80µm !

ntensity

Super-Resolution Imaging Single-Photon Emission Microscopy (SPEM)

Integrative SPEM and CT

The Best Existing Technology

Super-Resolution Imaging Single-Photon Emission Microscopy (SPEM)

Few-View Image Reconstruction (Using GATE)

EM Scanning time

EM	120v	60v	40 v	30 v	20v
40					
26					
20					
16					

Modeling of Edge Penetration in Pin-Hole SPECT (GATE)

TOFPET DREAM

30 picosec TOF 4.5 mm LOR Resolution 10 picosec TOF 1.5 mm LOR Resolution 3 pico-sec TOF 0.45 mm LOR Resolution

Histogramming No "Reconstruction"