Electronics and Signal Processing for Fast Detectors

Jean-Francois Genat

University of Chicago

TWG/B Seminar, Argonne National Laboratory, March 19th 2009

Outline

- Fast (photo) detectors
- Signals
- Timing extraction techniques, waveform sampling
- Application to time and position measurements using delay-line readout
- Developments

Fast Timing and Imaging Photo-detectors

Multi-anodes PMTs

Dynodes

Si-PMTs Quenched Geiger

MCPs

Micro-Pores

QE	30%	90%		
CE	90%			
Rise-time	0.5-1ns	250ps		
TTS (1PE)	150ps	100ps		
Pixel size	2x2mm ²	50x50μm ²		
Dark counts	1-10Hz	1-10MHz/pixel		
Dead time	5ns	100-500ns		
Magnetic field	no	yes		
Radiation hardness	S	1kRad noise x 10		

30% 70% 50-200ps 20-30ps 1.5x1.5mm² 1-10 kHz/cm² 1μs 15kG

Micro-channel Plates: Micro-Pores

Comparison of 5micron pore and 2 micron pore MCP's (same magnification)

From BURLE-Photonis

Micro-Channel Plates

Optimization for timing

Reduce Transit time

The thinner, the best Reduce pore size, primary and secondary gaps

Avoid parasitic readout components

Connectors (!) Parallel capacitances Series inductances

Reduce rise-time, consequently improve time resolution

Time response curves for two models of PMT110 with different MCP pore diameters.

From Photek

The fastest photo-detector to date

Imaging Micro-Channel Plates Detectors

Two-micron space resolution using analog charge division technique

R. Bellazzini et al. / Nuclear Instruments and Methods in Physics Research A 591 (2008) 125-128

High precision analog measurements.

Fig. 4. A profile along a line cut across the MCP pores of Fig. 3. The spatial resolution of the readout is $\sim 2 \,\mu m$ rms, capable of resolving every single MCP pore.

2D+ time with T-lines and Pico-second Timing

- Transmission lines (T-lines) readout and pulse sampling provides
 - Fast timing (2-10ps)
 - One dimension with T-lines readout 10<u>0µm-1mm</u> Transverse dimension from centroids

Less electronics channels for large area sensors

Outline

- Fast (photo) detectors
- Signals
- Timing extraction techniques, waveform sampling
- Application to time and position measurements using delay-line readout
- Future developments

Micro-channel Plates Sampled Waveforms

Synthesized signals for simulations

MCP signals: $(t/\tau)\exp(-t/\tau)\otimes(t/\tau)\exp(-t/\tau)$ τ is tuned to a 280ps rise-time

MCP Signals spectra

Outline

- Fast (photo) detectors
- Signals
- Timing extraction techniques, waveform sampling
- Application to time and position measurements using delay-line readout
- Developments

Single Threshold: Noise and Slope

Single threshold: Time spread proportional to amplitude noise and inverse to slope

Pulse sampling and Waveform analysis

- Sampling frequency: Set at twice the largest frequency in the signal spectrum

- Digitization:

Evaluate what is needed from signals properties:

- Extract precise time and amplitude from minimization of χ^2 evaluated wrt a template deduced iteratively from the measurements, at the two ends of the T-line.

- With T-lines, the two ends are highly correlated, so, MCP noise is removed.

Iterative template

At T-lines ends

Template from average std= 4.26ps

Template iterative std=3.93

Methods compared (simulation)

Time resolution vs Number of photo-electrons

Pulse sampling Timing resolution vs Sampling rate (simulation)

Timing resolution vs Sampling rate / Analog bandwidth

Pulse sampling benefits

Pulse sampling and waveform analysis:

- Picosecond timing with fast detectors
- Charge: centroids for 2D readout
- Resolve double pulse

For large area detectors read with delay lines in series

Outline

- Fast (photo) detectors
- Signals
- Timing extraction techniques, waveform sampling
- Application to time and position measurements using delay-line readout
- Developments

Position sensing using fast timing

• Edward May, Argonne:

Laser test bench calibrated with the single PE response of a Quantacon (single photon sensitive) PMT.

- 25/10um pores MCP on transmission lines card
- Scope triggered by the (somewhat jittery) laser signal
- Record two delay lines ends from the same trigger
- Tek 6154C scope at 20 Gs/s

Results

Position resolution (velocity=8.25ps/mm) :50PEs4.26ps213μm158PEs1.95ps97μm

Measurements vs simulation

50PEs rms=3.82ps vs 2.5ps (simulation)

18PEs rms = 6.05ps vs 7ps (simulation)

Measurements do not match exactly since MCP noise is partly removed (T-lines ends correlated)

Position Resolution at 158PEs

158 PEs

Outline

- Fast (photo) detectors
- Signals
- Timing extraction techniques, waveform analysis
- Application to time and position measurements using delay-line readout
- Developments

Transmission lines as anodes

- Present Photonis MCPs: Pixellated anodes, pitch of 1.6 x 1.6 mm
 - Atomic Layer Deposition (ALD) detectors
 - Waveform sampling with fast sampling chips
- Integration of lines as anodes in vacuum for large area sensors
- Plates of 1" x 1" in ALD process
- Modules of 8 " x 8 " ?
- One vacuum vessel (glass)

Henry Frisch, (U-Chicago) W. Hau, M. Pellin (ANL)

glass

Check in vacuum T-lines coupled to Micro-Channel Plates (impedance, velocity)

B. Adams, K Attenkoffer, ANL

Fast Sampling Electronics

Constant fraction	SLAC LBNL/Hawaii	- NIM - Discrete		MCP 6ps	Electronics 3.4ps
Multi threshold	Chicago	- Discrete + CERN	TDC cl	nip	
Waveform analysis	Hawaii Orsay/Saclay PSI	BLAB line chipsSAM lineDRS line	6GS/s 2GS/s 5GS/s	20p:	s 10ps
Under developme 10-40 GS/s samp	ent: oling chip C	hicago + Hawaii + (Drsay/S	aclay	

Fast Sampling Integrated Circuit

- Sampling frequency
- Analog bandwidth
- Analog dynamic range
- Depth
- Readout frequency
- Read/Write

- Existing ASICS have limited bandwidth

130nm CMOS technology would allow >1.5GHz bandwidth, 10-50 GS/s sampling rate Timing resolutions of 2-3ps

40 GS/s Timing generator

640 MHz clock in

16 x 4 = 64 cells, 25ps step delays

Design by Fukun Tang (U-Chicago)

Conclusion

Sampling electronics and waveform analysis for large-area fast detectors such as Micro-channel Plate should achieve :

- 2-10ps timing (electronics)
- 2 dimension position sensing with 100µm-1mm precision

Extra slides

Best position

Figure 1. Schematic of the cross strip anode showing the MCP charge cloud, and charge distribution on the cross strips.

A few microns position resolution

From O. Siegmund, A. Tremsin (LBL)