Development of Large Area Fast Microchannel Plate Photodetectors

for the Large Area Picosecond Photodetector Development Collaboration
Bob Wagner, Argonne National Laboratory
SORMA XII
Thursday 27 May 2010
LAPPD Project Scope

Large, Cheap, Fast Microchannel Plate Photomultiplier

- 20×20 cm² active area (development on 3.3cm diam. disk)
- Novel, inexpensive MCP substrate
 - Borofloat glass capillary substrates (10–20 μm pores, L/D ~60)
 - Anodic aluminum oxide (AAO) -- ceramic
- Pore activation via Atomic Layer Deposition (ALD)
 - Separate material for resistive and secondary emission layers
 - Optimize resistive and emissive layers via study of range of materials
- Customized anode readout
 - Strip line double-ended readout for picosecond timing & water Cherenkov
 - Pad readout for energy and/or coarse spatial resolution -- gamma-ray telescope camera, dual readout calorimeters, medical imaging
- High quantum efficiency photocathode --- ≥25% (1st gen. > 10%)
 - Bialkali (baseline), multialkali
 - “III–V” materials, e.g. GaAs, GaN
 - Systematic program of photocathode development and analysis
- Waveform sampling switched capacitor array ASIC for readout
- Use simulation to vet and tune design
Motivation

Complete particle measurement: E, p + m(PID)
1ps time & 1mm space resolution, $100k/m^2$

Bill Moses (LBNL)
Large Area Picosecond Photodetector Workshop,
Clermont-Ferrand, Jan 2010

Hermetic TOF Water Cherenkov Detector

Water Cherenkov neutrino detector (DUSEL) ~80-90%
coverage and 3-d photon vertex reconstruction
100ps time & 10mm space resolution, $10k/m^2$

TOF (Effective Efficiency) Gain for Whole-Body PET (35 cm)

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Δt (ps)</th>
<th>TOF Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGO Block Detector</td>
<td>3000</td>
<td>0.8</td>
</tr>
<tr>
<td>LSO Block (non-TOF)</td>
<td>1400</td>
<td>1.7</td>
</tr>
<tr>
<td>LSO Block (TOF)</td>
<td>550</td>
<td>4.2</td>
</tr>
<tr>
<td>LaBr₃ Block</td>
<td>350</td>
<td>6.7</td>
</tr>
<tr>
<td>LSO Side Coupled</td>
<td>250</td>
<td>9.3</td>
</tr>
<tr>
<td>LSO Small Crystal</td>
<td>210</td>
<td>11.1</td>
</tr>
<tr>
<td>LuI₃ Small Crystal</td>
<td>125</td>
<td>18.7</td>
</tr>
<tr>
<td>LaBr₃ Small Crystal</td>
<td>70</td>
<td>33.3</td>
</tr>
</tbody>
</table>

- *Incredible Gains Predicted*
- *Nothing Else Can Give Us Gains of This Size!*

Development of Large Area Fast MCP Photodetectors, R. Wagner, Argonne, SORMA XII, 20100527
Glass Capillary Substrate Development

- Glass substrate development, fabrication, slicing by Incom, Inc. (Charlton, MA, USA)
 - Borosilicate glass capillary
- Disk development substrates in production
 - 32.8mm diameter
 - 20μm pore L/D=60 pieces being produced and delivered now; default working size
- 8”×8” 20μm pore substrate in fabrication at Incom.
 - Shipment of first pieces targeted for July, 2010
- All substrate pores have 8° bias w.r.t axis ⊥ to substrate
 - Used in pair chevron configuration to reduce positive ion feedback damage to photocathode
Anodic Aluminum Oxide (AAO) Development

- Self-ordering fabrication of pore structure in aluminum by anodization
- Alternative to glass capillary MCP
- Argonne AAO fabrication is 2-step
 - Form 10nm pore matrix through anodization (more “natural” size for process)
 - Pattern and etch 2–10μm pore via photolithography
 - Initial 10nm pore structure enables uniform etch larger diameter pores
- Development at Argonne is very successful
 - Now producing pores with funneled pores
 - Potential for large effective open area ratio
 - Addresses first-strike problem
 - Possible future generation of MCP with Photocathode coated on funnel via ALD

32.8mm AAO test substrate
20μm pore, L/D~10, 23% open area
Pore Activation via Atomic Layer Deposition (ALD)

Example:

- OH on surface provide reaction sites
- Trimethyl aluminum reacts liberating methane, forms Al₂O₃ layer. Leaves methyl group inhibiting further reaction on surface
- Exposure to H₂O removes methyl group. Leaves OH sites for next reaction
Functionalization of Commercial MCP

First test of ALD coating

Commercial Pb-Glass MCP with existing functionalization

ALD of Al₂O₃ coating improves gain

Comparison of MCP Amplification Before and After ALD Coating

Mean # of Electrons Collected on a Single Strip

Voltage Across the MCP (kV)

graphic courtesy of Matt Wetstein
ALD Functionalization of Micro-Channel Plates

New ALD chemistries for resistive coating developed at Argonne

MCP 72/78 Amplification: 1.3/1.2 kV

β_T = -0.02 for commercial MCP (literature) = -0.027 “New Chemistry 1”

Signal from MCP pair coated with new resistive layer + Al_2O_3 emissive layer
Visual Study of ALD Coated MCP

Glass capillaries coated by Arradiance, Inc.

Pair test at Space Sciences Lab/UC-Berkeley

Electron map of MCP

“Multi” boundaries visible, fade at higher gain

Arradiance ALD/Incom MCP Pair Test
Image - UV 2200v Gain Map - UV

Space Sciences Laboratory, University of California, Berkeley
Advantages of ALD vs Conventional Pb Glass MCP

- Conventional lead–oxide MCPs have single composition for resistive/emissive material
 - Functionalized in H–furnace requiring long “scrubbing” time (removal of volatiles)
- ALD allows separate control of resistive and emissive layers
 - separately optimize each layer for best overall performance
 - Scrub time reduced by up to ×10
MCP Photomultiplier Packaging -- Ceramic Body
(Space Science Laboratory/UC-Berkeley)

Single Joint Brazed Body
Tray for Indium top seal
- Kovar
- Ni plated/sintered
- Cu plated for Indium wetting

SSL/UC-Berkeley Ceramic Body Design

Final assembly with MCP, photocathode
top plate, anode strip line, HV pins

development drawings courtesy J. McPhate, SSL
Ceramic body is proven method. Design by SSL group with years of experience. Relatively expensive.

UC/Argonne alternative design with inexpensive glass & bonding methods. Untested.

Silk-screen printing of anode ground plane on B33 glass

First “sealed box”. No internals.
Glass “drop piece” for internal support.
Top seal is glass frit in this test.
Will ultimately use Indium or Indium alloy
“Inside-Out” Supermodule Design for Tiling Photodetectors

Ground plane on vacuum side of detector. Provides even silver surface for sidewall bonding.

Silver signal strip lines on separate board positioned beneath photodetector

Differential readout at either end allows tiling of MCPs onto supermodule board

Mockup of three tile supermodule

Signal testing of supermodule board beginning at Univ. of Chicago
Picosecond Timing Readout ASIC

- Univs. Chicago/Hawaii ASIC design for readout using switched capacitor array in 130nm CMOS
- 1st round chips delivered in Oct, 2009
 - 4 channels of full sampling
 - 10-15 Gsamples/s
 - 256 cells @ < 100ps/cell
 - 1-2 GHz bandwidth, 50Ω
- Have tested:
 - DC power vs. bias
 - Sampling cell response vs input
 - ADC’s comparator
 - Leakage
 - Digital readout
- AC testing board in preparation
- 2nd generation design submitted with many improvements: input trigger disc., phase lock, higher bandwidth, increased sampling rate,...
 - Chips due from foundry June, 2010
Summary

- Large Area Picosecond Photodetector Development collaboration is nearing end of first year having realized several initial goals.
- Atomic Layer Deposition coatings of 33mm glass capillary disks producing gain $>10^6$ for MCP pair
- Study of 3 ALD resistive + 2 ALD emissive chemistries
- Mature mechanical designs for hermetically sealed tube
 - Proven design in ceramic by SSL
 - Well-advanced inexpensive glass design -- close to first hermetic box
- Fast sampling ASIC has progressed through two design generations
 - Previously demonstrated ~20ps single channel resolution with commercial MCP (Photonis Planacon) and commercial electronics (Ortec 9327 Amp/Timing Disc)
- Developed alternative Anodic Aluminum Oxide substrate
- Beginning design and assembly of photocathode development facility at Argonne
- Facility for 8”×8” photocathode fabrication and study in progress at SSL
Future Work -- Year 2

- Fabrication of photocathode on 8”×8” borosilicate glass
- Delivery and ALD of first 8”×8” glass capillary plates
- Fabrication of hermetically sealed “photocathodeless” full size MCP
 - MCP plates, spacers, anode readout; no photocathode on top plate (or possibly thin gold photocathode)
- Testing of 2nd generation sampling ASIC
- Vetting of supermodule design

Visit our web site for more information:

http://psec.uchicago.edu
(“Blog” and “Library” links are a good starting place)
BACKUP SLIDES
General procedures for Fabrication of MCPs

1. Pristine MCPs
2. Acetone sonication clean
3. Air dry at 200°C >2h
4. Loading in Vacuum reactor
5. Ozone clean
6. ALD coatings
7. Baking at 400°C under N2
8. Electrode coating
9. Deliver for testing
10. Testing resistance

For fabricating one pair MCPs:
~20-30hrs if everything is right

courtesy Qing Peng, Argonne ALD Group
Atomic Layer Deposition (ALD) Thin Film Coating Technology

- Atomic level thickness control
- Deposit nearly any material
- Precise coatings on 3-D objects (JE)

ALD Thin Film Materials

- Oxide
- Nitride
- PhosphideArsenide
- SulphideSelenideTelluride

- Lots of possible materials => much room for higher performance

Jeff Elam pictures