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Abstract

We discuss the use of Cherenkov radiation produced by a particle
traversing the window of a photomultiplier for fast time-of-flight measure-
ments for particle identification. We simulate the production of Cherenkov
light in several multi-channel plate photomultiplier tubes and predict the
detection of tens of photons per Cherenkov shower. Monte Carlo simula-
tions suggest that time resolutions on the order of 1 ps may be possible
with existing devices.

High-energy physics relies on the data produced from colliders. These accel-
erators intersect counter-rotating beams of particles. Some machines collide pro-
tons with protons (Fermilab and LHC), others electrons with positrons (KEK,
SLAC Cornell, and Beijing), and others nuclei with nuclei (RHIC). When two
particles in opposing beams collide, their combined energy is converted into a
shower of secondary particles. By examining the detritus of the collision, ex-
perimentalists can determine the intermediate particles formed, and destroyed,
in the instants after the collision. Which particles are produced, and how often,
gives clues about the basic physics of the standard model.

Identifying the secondary particles is therefore one of the goals of particle
detectors, large devices built around the sites where the beams intersect. Typ-
ically built in and around a large solenoidal magnet, these detectors consist of
various devices to measure the time, position, direction, and energy of the sec-
ondary particles. The large magnetic field (typically on the order of 1-2 Tesla),
bends the tracks of charged particles, giving a measure of their momentum.

The charged hadrons 7, K, and p, the predominant types produced in colli-
sions, have very similar interaction characteristics and can best be distinguished
by measurement of their mass. Mass can be measured by combining a velocity
measurement with the momentum measurement. This velocity measurement
is the goal of time-of-flight (TOF) detectors. Since the secondary particles are
typically moving at nearly the speed of light, the time differences between dif-
ferent particles with the same momentum are very small. Figure 1 shows the
difference in the time it takes the charged hadrons to travel 1.5 m, as a function
of momentum. More accurate mass measurements may also allow the identifica-
tion of heavy exotic particles which would otherwise be mis-identified as known
particles.
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Figure 1: The separations of pions, kaons, and protons, the difference in the time
it takes two different particles with the same momentum to travel 1.5 m, as a
function of momentum. Current time-of-flight detectors have a time resolution
of 100 ps.

1 Overview

Current TOF systems typically consist of an array of scintillator bars with
photomultiplier tubes (PMTs) at either end. The time resolution of such a
system is limited by the difference in path lengths of individual photons traveling
down the scintillator to the PMT. Current systems achieve a time resolution of
about 100 ps.

We are proposing a different type of TOF system, one in which the particles
travel directly through the photodetector itself. This requires that the collision
vertex be surrounded by detectors. We propose tiling either the inside (for better
timing) or the outside (for better access) of the solenoid with photodetectors
[1], as shown in Figure 2. Cherenkov light would be produced in the window
of the photodetector, and would shine directly into the detector. Such a setup
eliminates both the scintillation and the bouncing of light which limit the time
resolution of traditional TOF systems.

We aim to achieve a TOF resolution on the order of 1 ps. To do this, we need
photodetectors with superb time resolution. One candidate photodetector for
this purpose is a micro-channel plate photomultiplier tube (MCP PMT). Micro-
channel plate photomultiplier tubes, shown schematically in Figure 3, resemble
traditional PMTs, in that light is converted to electrons by a photocathode,
and the electron signal is amplified and deposited on an anode to be detected.



Figure 2: A schematic showing the placement of photodetectors around a de-
tector solenoid coil. The detectors may also be placed just inside of the coil.
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Figure 3: A schematic of the amplification process of a micro-channel plate
photomultiplier tube. A relativistic particle produces Cherenkov radiation in
the window. This radiation is converted into electrons by a photocathode.
The electrons produce a shower in the micro-channel plates, and the shower
is deposited on the anode to be detected.



Instead of using a traditional dynode chain for amplification, MCP PMTs use
one or more micro-channel plates. Micro-channel plates are lead-glass plates
of order 100 pm Ilmm thick perforated with an array of cylindrical channels
with diameters of 2 100 um. When a voltage is applied across the plate, each
of these channels acts as a dynode chain, giving amplifications of 10 107 [2].
Because of the small channel diameter and compactness of the device, which is
only several millimeters thick, electron path lengths through the micro-channel
plate cannot vary much, leading to better time resolution.

In addition to TOF measurements, a detector with a 1 ps time resolution
could be used to associate photons with collision vertices. When the two beams
collide, there may be several individual particle collisions, each of which may
produce photons and other particles. Being able to measure the arrival time
of the photons to 1 ps would give us sub-millimeter resolution on their path
length, helping one to distinguish which collision vertex created which photon.

2 Cherenkov Radiation

Cherenkov radiation is produced by a charged particle in a medium when the
velocity of the particle exceeds the velocity of light in that medium [3, 4]. Since
the velocity of light in a medium is ¢/n, where n is the index of refraction,
Cherenkov light will be produced whenever v > ¢/n, or using 5 = v/c, fn > 1.
This radiation is produced essentially instantaneously. In the limit of an infinite
radiating medium, it forms a coherent wavefront in the shape of a cone. A little
geometry shows that the Cherenkov cone must have an opening half angle of

w/2 — 6., where

cosf,. = Bin (1)

Since we will be studying cases in which the thickness of the radiator is on the
order of 1000 times the wavelength of the radiation in question, the infinite
radiator approximation is valid.

Cherenkov radiation is ‘blue’; that is, there is more energy in the shorter
wavelengths. The number of photons radiated per wavelength per distance is
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where Z is the change of the particle (in multiples of e) and « is the fine
structure constant.[3, 4] Note that the index of refraction generally depends of
the wavelength. This corresponds to several hundred photons per centimeter
radiated in the visible range. As a rule of thumb, the number of visible photons
per centimeter is AN/z = 400 sin” 6, [5].

3 Detection

Not all of the photons radiated will be detected, however. Some photons, espe-
cially those near the edge of the transparency window, may be lost to absorption



in the radiator. Others may reflect off the inside edge of the radiator. More
importantly, the photocathode in the photomultiplier will only emit an electron
for some fraction of the photons that reach the photocathode. The number of
photo-electrons emitted per incoming photon is called the quantum efficiency
(QE) of the photocathode, and for most photocathode materials, this number
is less than 25% [6].

Two main factors will affect the time resolution of the detector. The first
is the spread in the arrival of the Cherenkov radiation to the photocathode.
When the charged particle reaches the back edge of the radiator, the radiation
produced at the end of its path will also be at the back edge of the radiator.
Radiation produced earlier will be spread out in the Cherenkov cone stretching
back into the radiator. (See Figure 4.) Working out the geometry, we can show
that a photon emitted a distance x from the rear of the radiator will still have
to cover a distance d = x (8n — 1/8n) to reach the end of the radiator when the
charge particle exits the radiator. Thus, in a radiator of thickness 7', the first
photons emitted will arrive

T , . .

At = B (B*n* —1) (3)
after the last photons emitted. Since the photons are emitted uniformly along
path of the charged particle, they will arrive uniformly, neglecting absorption,
during the interval At. Note that, since n is a function of wavelength, At will
vary across the spectrum.

The other main factor in the time resolution of the detector is the transit
time spread (TTS), or jitter, associated with the photomultiplier tube itself.
The time it takes from the creation of a photo-electron to the production of a
signal will vary slightly from trial to trial. Some of this variation comes from
differences in the path length of the first photo-electron, but much of it comes
from difficulties in gathering the signal from all parts of the anode [7]. The
best detectors currently on the market have transit time spreads of tens of
picoseconds. Burle Industries has developed a 2 ym pore MCP PMT that has
achieved a 10 ps TTS [8].

4 Sample Detectors

To understand the capabilities of today’s state of the art detectors, we have
simulated the behavior of some of Hamamatsu’s micro-channel plate photomul-
tiplier tubes (MCP PMTs). Five specific models, the R3809U-50, -51, -52, -57,
and -58, were selected for study on the strength of their low wavelength be-
havior. In a custom design, both the material and the thickness of the PMT
window can be chosen to optimize performance. However, we use the values
cited in a Hamamatsu brochure [9] for the window material and thickness as a
starting point for each model. This brochure also includes plots of the quantum
efficiency of the detectors versus wavelength. Since these plots are different for
detectors with the same photocathode, but different window materials, we see



Figure 4: The Cherenkov cone from a charged particle traveling along AB
when the particle reaches the edge of the radiator, BD. Light emitted at A
still has to travel a distance C'D to reach the edge of the radiator. The circles
represent spherical wave-fronts emitted from points along the particle’s path.
The Cherenkov cone forms where these wave-fronts constructively interfere.

that these plots include losses due to the window. Since the Cherenkov light
is produced inside the window, not in front of it, we should actually get better
detection than predicted. A summary of these detectors is included as Table 1.
All of these detectors have a window thickness of 3.2 mm.

Another Hamamatsu document [10] provides an estimate of the TTS of these
MCP PMTs. The detectors were exposed to radiation to produce a single photo-
election and the times until signal were plotted in a histogram (Figure 5). Their
distribution has a FWHM of 25 ps. While this distribution was not Gaussian,

Model | Spectral Range (nm) | Photocathode | Window | Peak | Jitter
R3809U- | Min. | Peak | Max. Material Material | QE (%) | (ps)
50 175 430 850 Multi-alkali Quartz 20 25
o1 175 600 900 EMA® Quartz 8.3 25
592 175 400 650 Bi-alkali Quartz 20 25
a7 110 230 310 Cs-Te MgF, 11 25
a8 110 430 850 Multi-alkali MgF, 20 25

“Extended Red Multi-alkali

Table 1: Some of the characteristics of the Hamamatsu MCP PMTs, taken
from [9]. The jitter is the transit time spread (FWHM) for a singe photo-
electron event.




the main peak was sufficiently close for us to approximate it as such. Thus, in

the analysis that follows, we take the transit time spread to be a Gaussian with
a FWHM of 25 ps.
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Figure 5: The transit time spread for a single photo-electron event in Hama-
matsu’s MCP PMTs (taken from [10]).

5 Estimating the Number of Photons

Our first goal was to estimate the number of photons of Cherenkov radiation
detected by each PMT. This number will be given by integrating Equation 2 over
the thickness of the radiator. For each wavelength, the quantum efficiency must
be factored in, and the result can be integrated over the detectable wavelengths
to produce the total number of photons detected. Since the particles we plan to
investigate have charges of +e, we set Z2 = 1. Since the particles will be highly
relativistic, we set 5 = 1. Later, we will estimate the error induced by this.

To estimate the values of n()), we use Sellmeier coefficients for the window
materials taken from [11]. These coefficients attempt to fit n(\)? to

BX* . DX
At st o g (4)

We found that this fit was good to the fifth decimal place for crystalline quartz,
as compared to the experimental values from [12]. For the Model -50, -51, and
-52 PMTs, which were listed as having windows of “Quartz (Fused silica or
synthetic silica)” [9], we used Sellmeier coefficients for SiO,. The -57 and -58
PMTs have windows of MgF,, which is birefringent. Birefringent materials are
given two indices of refraction: n,, the ordinary index, and n., the extraordinary
index. The ordinary ray, which vibrates perpendicular to the optical axis of the



material, will always travel with an index of refraction n,. The index for the
extraordinary ray will vary between n, and n., depending on the orientation.
Since the two indices are rather close in MgFs, we chose to simply use the
ordinary index. Since n, < n. in the optical region, this approximation will not
overestimate the number of photons produced.

The quantum efficiencies of the photocathodes (with window losses folded
in) are given as a plot versus wavelength in [9]. No analytic form, however,
was given. We approximated the QE by reading the values at several points
and linearly interpolating between them. In the wavelength range 100 nm to
400 nm, where most of the photons will be produced and the QE changes the
most dramatically, we sampled the QE every 12.5 nm. Above this range, we
sampled only every 25 nm.

The integration of Equation 2 is handled numerically. For each wavelength,
the algorithm solves for the number of photons at a distance = from the front of
the radiator (see Figure 4) by Euler’s method, using a step size dz. (Equation
2 could be integrated exactly for x; this method was chosen to allow additional
absorption terms to be added.) Once the back edge of the radiator has been
reached, the number of photons for each wavelength is multiplied by the quan-
tum efficiency of the photocathode at that wavelength to estimate the number
of photons that will actually be detected. The resulting values are integrated
over A using the trapezoidal method with step size dA.

The number of photons predicted to be detected for each of the five PMTs
is listed in Table 2. These integrations were done with step sizes dx = 10 ym
and d\A = 1 nm. To test that these step sizes were small enough, we ran an
integration with each step size 1/10 of the above values. This result differs from
the previous result by about 0.02%, which means that our grid size is not causing
inaccuracies at a level of concern to us. It is interesting to compare the Model
-50 to the Model -58, as they are identical except for their window material.
The quartz window of the Model -58 has a higher index of refraction, but is not
transparent as far into the ultraviolet as the MgFs window of the Model -58.
These data show the extra reach into the ultraviolet more than makes up for
the lower index of refraction, so MgFs is the preferred window material.

All of these values were calculated under the approximation 5 = 1. To test
the quality of this approximation, we calculated the number of photons expected
for the Model -57 and -58 PMTs for 3 values ranging from 0.9 1. We found that
the percentage change in the number of photons was about twice the change in

Model R3809U- 50 51 52 57 58
Window Material | Quartz | Quartz | Quartz | MgF, | MgFs
Photons Detected 49 13 47 38 74

Table 2: The number of photons predicted to be detected for each of the PMTs.
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Figure 6: The number of photons detected by the Hamamatsu Model -58 PMT,
for varying . While 7/K /p discrimination will take place in the § = 1 limit,
exotic particles with large mass may be detected at lower 3.

B (see Fig. 6). This is reasonable, as

10 0°N 1 2 ~9 (5)
N OB dxdN — B n2B>—1 "

for 8 =~ 1 and n = 1.5. This result provides a simple rule of thumb for estimating
effect as 8 decreases, which is important for searches for heavy exotic particles.

6 Estimating the Time Resolution

To estimate the time resolution of MCP PMTs, we developed a Monte Carlo
algorithm to simulate the emission and detection of Cherenkov radiation. From
these simulations we can estimate the spread in detection times.

The algorithm works by splitting the radiator into a grid in z, the distance
into the radiator, and A, the wavelength, much like the integration algorithm
from above. For each point in the grid, 0 N/0zO\ was calculated. This was
multiplied by the grid size dz - d\ and by the QE for that wavelength. The
result was taken to be the probability of emitting a detected photon from that
position. A uniform random number on the range (0,1] was generated, and if it
was less than the probability from above, a photon was emitted. From Equation
3, the time of arrival at the photocathode after the hypothetical first photon
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Figure 7: The spread in first photon detection times and average photon detec-
tion times for a set of 1000 simulations of Hamamatsu’s R3809U-58. Inset is
the number of photoelectrons detected for each of those simulations.

was calculated. A Gaussian random variable, with a mean of 0 and a FWHM
of 25 ps, was added to simulate the jitter of the PMT.

Two pieces of information were extracted from the photon detection times:
the detection time of the first photon and the mean of the detection times. In a
detector, the former would be realized by triggering on the leading edge, while
the latter might use a constant fraction trigger. Additionally, we kept track of
the total number of photons detected, to assure that the results were consistent
with the previous calculations. In order to understand the statistics of the
detection times, we ran the simulations many times for each PMT and calculated
both the average and root mean squared (RMS) values for the data set. We
found that simulation blocks of 1000 runs produced both average and RMS
values that differed by around 1%, which is accurate enough for our purposes.
Because of the number of runs needed, we used a larger grid spacing than was
used for the calculation of number of photons: dz = 100 gm and dA = 10 nm.
One block of runs done with the grid spacing 1/10 as large in both z and A
produced results that agreed with the looser grid spacing to within 1%.

The results for the five PMTs are summarized in Table 3. In all cases
the number of photons generated were distributed in a Gaussian around the
value calculated in the previous section. The mean photon detection times also
displayed a Gaussian distribution, while the first photon detection times did
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Model R3809U- 50 51 52 57 58
First Photon Time
Mean (ps) | -18.83 | -11.91 | -18.49 | -17.85 | -20.84
RMS (ps) | 5.266 | 6.493 | 5.575 | 5.405 | 5.295
Average Photon Time
Mean (ps) | 6.496 | 6.412 | 6.604 | 6.188 | 5.637
RMS (ps) 1.682 | 3.129 | 1.691 | 1.922 | 1.347

Table 3: The mean and RMS of the first photon detection time and the average
photon detection time. Time 0 is the ideal first photon time.

Transit Time Spread (FWHM) (ps) 25 20 15 10 5

Average Photon Time RMS (ps) 1.318 | 1.043 | 0.8374 | 0.6432 | 0.4805

Table 4: The variation of the average photon detection time RMS with changing
transit time spread of the PMT. All other PMT characteristics are those of the
Model -58. Burle Industries has developed a MCP PMT with a TTS of 10 ps.
8]

not. These distributions displayed a long tail toward negative (earlier) times
with a sharp cut off on the other side of the peak.

A large component of the spread in the detection times is due to the jitter
in the individual photon detection. However, the stochastic nature of both

spread. Therefore, while improving the transit time spread of the PMT will
improve the overall time resolution, the amount of improvement, is limited. Since
recent advances have produced PMTs with transit time spread of less than
10 ps [8], we modeled the average photon detection time for a PMT with the
same characteristics as Hamamatsu’s Model -58, but with reduced transit time
spreads. The results are shown in Table 4. This demonstrates that significant
improvement could be made by reducing the transit time spread to 10 ps or
less, and that 1 ps resolution is in principle achievable.

7 Non-Normal Incidence

moving normal to the surface of the detector. While this greatly simplifies the
calculations, it is not representative of the geometry of a particle detector (see
Figure 2). Particle paths will be bent by the solenoidal magnetic field of the
detector, although, for the high-energy particles in which we are interested, this
effect will be minimal. More importantly, the PMTs will not, in general, be
directly facing the collision vertex. For the simple arrangement where PMTs
are tiled in a cylinder around the beam line, an un-curved track will have an
angle of incidence of about 45° for the outer-most PMTs.

We adapted the Monte Carlo algorithm to simulate the emission of Cheren-
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kov light from a particle track at an angle of ¢ to the normal. There are two
main effects of this change: a longer particle track through the radiator and
the loss of azimuthal symmetry. The first is accommodated by increasing the
window thickness by a factor of 1/cos¢. This allows us to use the same step
size as before, which was shown to be small enough to be accurate. To account
for the loss of symmetry, each photon generated is randomly assigned an angle
1, which represents the angle between the photon’s path and the normal plane
containing the particle track. As derived in Appendix A, the time delay for a
photon emitted a distance x from the back of the radiator, as measured along
the track of the particle, to reach the back of the radiator is given by

At = — Bon” —1
Be \ 14 costp tan p/2n2 — 1

It should be noted that, if ¢ > 6., the Cherenkov angle, At may run negative
for small values of ¢. Additionally, if ¢ > 7/2 — 6., photons with ¢ near 7 will
not hit the back face of the radiator. Since these will show up as negative times,
care must be taken to determine the legitimacy of negative times.

When ¢ > 7/2 — 8., there is the possibility that a photon may be emitted
nearly parallel to the back face of the radiator. Such a photon would have a very
large At. Even one such value can greatly disrupt the statistics of the average
photon time. Moreover, these photons would not be important for timing: the
arrival time, even in an averaging scheme would depend of the initial pulse of
photons, not on any stragglers. Therefore, we discard all photon arrival times
of more than 150 ps, the rise time of the Hamamatsu MCP PMTs. Since most
of the photons arrive in a much shorter window (as shown later; see Figure 8),
the total pulse will fall off after about 150 ps. Any photon arriving after that
time will not affect the result.

For each in a series of angles ¢, 1000 simulations were run of the Model -58
MCP PMT, with the same settings used previously. The first photon detection
time, the average photon detection time, and the number of photons were col-
lected. The results are listed in Table 5. It should be noted that for MgF, 6, is
roughly 7/4. The RMS of the first photon time is fairly constant for all angles,
but the mean shifts significantly for large angles. Using the first photon time
would give a constant time resolution, but the shift in the mean would cause
a systematic effect if not accounted for. The average photon time gives better
time resolution, although this resolution does shift significantly. Also, the aver-
age photon time shifts non-monotonically with incident angle, which would also
require a correction.

Thus far, we have assumed that all of the photons produced will make it
through the interface between the rear of the radiator and the photocathode. In
reality, the radiator and photocathode will have different indices of refraction,
and only a fraction of the photons, depending on the angle of incidence and
polarization, will make it through the interface.

The probability that a photon is transmitted through an interface depends
on its polarization. For light polarized in the plane of incidence, the probability

(6)
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is
4 ng nq cos by cos bq

(7)

B (n1 cos by + ng cos B, )2
while for polarization perpendicular to the plane of incidence, it is

T 4ngnq cos by cos b (8)
’ (ng cos B + 1y cosby)”

where ng and n; are the indices of refraction and 6, and 8, are the angles of the
photon’s path to the normal in the two materials [13]. Cherenkov light is polar-
ized in the plane containing the photon and the particle track [14]. Combining
these, we find that the probability that a Cherenkov photon is transmitted
through the rear interface of the radiator is

2 .2
T = 4ngmnq cos x cos by cos” ¢ 5 + sin” ¢ 5| (9)
(ng cos b1 + ny cos ) (ng cos x + ny cosfy)

where
cosxy = cos ¢ cosf, + cos) sin ¢ sin b, (10)
cos( = sirllx (cos ¢ sinf, — cos) sin ¢ cosf,) (11)
no? .
cosy = /1 — Wsm X (12)

The details of this calculation are in Appendix B. This probability was added
into the Monte Carlo simulation.

The index of refraction of photon cathode materials is, in general, between
2 and 3 [15]. This means that the index of refraction of the photocathode
material is greater than the index of refraction of the window material, so there
is no chance for total internal reflection. The first photon times, average photon
times, and numbers of photons for various angles when n; = 2.0 and n; = 3.0
are listed in Tables 6 and 7, respectively. There are relatively few differences
between the two sets of results, especially for low angles. Since 2.0 is closer the
the index of refraction of MgF,, fewer photons are reflected, and the average
time RMS is slightly lower in this case, so more photons are detected. Since
grazing-incidence photons are more likely to be reflected than normal incidence
photons, the average photon time RMS is slightly better in both of these cases
than it is for the case with no losses at the interface.

We can also examine the distribution of photon arrival times directly. Figure
8 shows these distributions for various angles of incidence when n; = 2.0. On
these plots, the thick curve is a sample data set, and the shaded curve is the
average of 100 runs. While individual runs do not have enough data points
to give a nice curve, we can see from the average that the parent distribution
is mostly Gaussian. As the angle of incidence increases, a slight tail to large
times appears, the result of grazing-incidence photons. Since the majority of
the photons fall on the Gaussian part of the curve, the 150 ps cut-off discussed
before is reasonable.
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Angle First Photon Time Average Photon Time | Number of Photons
(7/2) | Mean (ps) | RMS (ps) | Mean (ps) | RMS (ps) Mean | RMS
0 -21.03 5.118 5.747 1.296 71.32 8.014
0.125 -21.02 4.945 6.124 1.275 73.46 8.095
0.25 -21.22 5.089 7.639 1.464 77.86 8.528
0.375 -21.49 4.687 12.28 2.161 84.73 8.832
0.5 -22.65 4.741 15.76 3.166 85.44 9.089
0.625 -24.72 4.778 10.70 2.763 90.12 9.491
0.75 -30.03 4.676 6.391 2.235 114.9 10.23
0.875 -52.37 5.402 -5.436 1.943 200.7 13.28

Table 5: Results for a Model -58 PMT with the particle incident at various
angles. For each angle, 1000 runs were conducted.

Angle First Photon Time Average Photon Time | Number of Photons
(m/2) | Mean (ps) | RMS (ps) | Mean (ps) | RMS (ps) | Mean | RMS
0 -20.58 4.913 5.740 1.320 70.65 7.900
0.125 -20.69 4.820 6.192 1.326 72.85 8.358
0.25 -21.34 5.085 4.608 1.455 75.83 8.291
0.375 -21.31 5.091 11.09 2.137 77.54 8.496
0.5 -22.58 5.023 11.05 2.698 72.73 8.190
0.625 -24.56 4.780 6.685 2.282 76.15 8.537
0.75 -30.34 4.965 2.106 1.991 95.84 9.562
0.875 -52.22 5.192 -10.52 1.630 165.3 12.57
Table 6: Results for various angles of incidence with reflection losses included.
Angle First Photon Time Average Photon Time | Number of Photons

(m/2) | Mean (ps) [ RMS (ps) | Mean (ps) | RMS (ps) | Mean | RMS
0 -20.84 4.969 5.758 1.368 67.83 8.091
0.125 -20.43 4.957 6.233 1.352 69.60 7.963
0.25 -20.79 5.019 7.788 1.551 72.31 8.592
0.375 -20.71 4.934 11.86 2.233 73.11 8.363
0.5 -21.52 5.105 11.94 3.088 64.78 7.769
0.625 -24.25 4.929 6.721 2.572 65.14 8.175
0.75 -29.69 4.969 1.355 1.966 79.39 8.647
0.875 -51.55 5.794 -11.78 1.615 136.4 11.78

Table 7: Results for various angles of incidence with reflection losses included.
ny = 3.0.
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Figure 8: Photon arrival times for the Model -58, with internal reflection for
ny = 2.0, for angles of incidence from (a) 0 to (h) 77 /16, in steps of 7/16. The
times are grouped in bins of 3 ps. The thick curve is an example pulse; the
shaded curve is an average of 100 sets of data.
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8 Obstacles

While we have shown that this new time-of-flight system is feasible with current
technology, many technical challenges remain.

The current high time resolution MCPs tend to be small; the Hamamatsu
MCP PMTs studied have an circular active area with an active area of 11 mm.
Larger MCPs have been made, but these have larger pores and do not have the
necessary time resolution. Large but fast MCP PMTs must be developed for
this system to be feasible.

Micro-channel plate PMTs will probably not function well in the large mag-
netic fields inside of the detector coil. If placed outside of the coil, the system
would also detect showers produced in the coil. For particles moving at an angle
to the detector, these showers could potentially trigger the time-of-flight system
before the original particle does. This can probably be overcome with a detector
sufficiently segmented, so that the particle track can be projected through the
coil to a specific element of the time-of-flight system.

If the time-of-flight system is to have picosecond resolution, electronics ca-
pable of measuring 1 ps must be developed. This will probably necessitate a
custom chip on each MCP PMT. We are investigating the electronics design,
which may involve a sub-divided anode with impedance-matched strip lines lead-
ing to the output and a “vernier” scheme of mixing the output with a reference
signal.

Finally, this system would require thousands of MCP PMTs and would be
expensive. We are confident that, if the other problems are overcome, this
system would be worth its cost.

9 Conclusion

We have proposed a new time-of-flight system in which micro-channel plate
photomultiplier tubes surround and look in at the collision vertex. Cherenkov
light produced in the MCP PMT windows by the secondary particles is used for
detection. Presently, the time resolution of such a system would be limited by
the transit time spread of the MCP PMT. With currently available devices, we
predict this system could achieve a time resolution near 1 ps. This prediction
is based solely on simulations; a physical proof-of-concept test is still needed.
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A Geometry of Non-normal Incidence

The geometry of non-normal incidence is sketched in Figure 9. Figure 9(a)
shows the overview of the situation. The particle is moving along AO, at an
angle ¢ to the normal to the back of the radiator (the plane containing OC). A
photon is emitted at point A, with a path that makes on angle of § = .., the
Cherenkov angle, to the path of the particle. This path is rotated v from the
normal to the surface. The photon passes through the plane perpendicular to
the particle track at B, and hits the back of the radiator at C. We want to find
the distance AC.

Figure 9(b) shows the relevant part of Figure 9(a), and Figure 9(c) shows
just the plane containing triangle AOC. Combining the definition ¢ = OB with
the definition of m in 9(b), we see

csina = m cos ¢ (13)
from which we get
c _cos¢  cos¢g (14)
m  sina  cosy

Also from Figure 9(c), we get the following relations:

c = ztanf (15)
x
b= 1
cosd (16)
L=1sind (17)
tan 3 = msin¢ (18)
_y
tan 8 = T (19)

Plugging Equation 14 into Equation 18, and combining it with Equation 19
gives us

% = —tan ¢ cos v (20)
Next, note that
T4y
t0 = 21
co T (21)
Using Equation 20,
cot = % —tan ¢ cosy (22)
SO a:
L=f+c= (23)

cot @ + tan ¢ cos )
From Equations 15 and 17, we have

T

b'sinf + wtanh =
cot @ + tan ¢ cos )
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Figure 9: A particle moving along AO emits a Cherenkov photon at A, which
reaches the back of the radiator at C. We wish to determine the difference
between the time when the particle reaches O and the photon reaches C' in
terms of the distance z and the angles 6, ¢, and .
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R ’ —tanf
~ sinf \cotf +tang cosyp

p x 1
cosf <1+c0s1ptan¢tan9 ) (24)
Adding Equation 16, we have

bt = ( ! ) (25)

cosf \ 1+ cos® tan¢ tanf

The particle is moving at a velocity of ¢, so it will take a time x/¢8 to reach
the back edge of the radiator. The photon, however, is moving at a velocity of
¢/n, so it will take (b+ b")n/c to reach the back of the radiator. Using Equation
1 for cos @, we find the time difference to be

zfn? 1 x
At = _ = 9
t c <1+cosd} tan¢tan9> cf (26)

which simplifies to

xr /82,’7/2
At =— B
' B <1+cos¢tan¢\/m 1) (27)
B Transmission of Cherenkov Light

The transmission of light at an interface depends on its polarization. Consider
Figure 10: a light ray is incident on the interface between a material with
index of refraction ng and a material with index of refraction n;. The plane
of incidence is is the plane of the paper. The angles 6y and 6; are related by
Snell’s Law:

No sin 90 =N sin 91 (28)

If the light is polarized so that the electric field points in the plane of incidence,
as shown by the E, vectors, the intensity transmission coefficient, the fraction
of the energy to be transmitted, is

4 ngny cos by cos by
T, = 5 (29)
(nq cosby + ng cosby)

When the electric field is polarized perpendicular to the plane of incidence, as
shown by FEj, the intensity transmission coefficient is

4ngnq cos by cos by

(ng cos by + ny cos b, )2

These expressions are derived in [13]. Since each photon carries a certain amount
of energy, these coefficients are also the probability for the transmission of a
photon with one of the polarizations.
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Figure 10: A ray of light is incident on the interface between two materials with
different indices of refraction. The amount of light reflected and the amount
transmitted depends on if the electric field is in the plane of incidence (E,) or
normal to the plane of incidence (Ey).

a)A

Figure 11: The relevant geometry for determining the probability of a photon
being transmitted at the interface between the radiator and the photocathode.
The particle is traveling along AO and emits a Cherenkov photon along AC.
The photon is polarized with the electric field parallel to EOQ. x = ZDAC and
(= ZFEO.
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The geometry of non-normal incidence is sketched in Figure 11. As in Figure
11, the particle travels along AQ, emitting a Cherenkov photon that travels
along AC. ADOC lies in the rear plane of the radiator, and AD is a normal to
this surface. Thus, AACD lies in the plane of incidence. # and ¢ are defined
as before; y is used as the angle of incidence. As in Figure 9, AO = z and
AC =b+1b'. Thus,

cosy = AD/AC
2 COS ¢

b+ b
2050
= mcosqﬁﬂ (14 cos® tan ¢ tan6)
x
cosx = cos ¢ cosf + cosp sin ¢ sin b (31)

Also, from Snell’s Law, we find

sinf; = -2 sin x (32)
n
Cherenkov radiation is polarized with the electric field in the plane with the
particle track [14]. Therefore, a Cherenkov photon will be polarized parallel to
the line FO, at an angle of ( to the plane of incidence. In quantum mechanics,
the probability of measuring a particle in some state to be in a given eigen-state
is proportional to the square of the inner product of the two states. Thus, the
photon will resolve into the p state with probability cos? ¢ and be in the s state
with probability sin? . The probability for the photon to be transmitted is

T =T,cos ( + Tysin® ¢ (33)

From Figure 11(c), with AO = x, we have

EO = zsinf (34)
AE = zcosf (35)
Figure 11(d) gives us -
tany = CE/EF (36)
Since
CE=AC —AE =b+1b — zcosf (37)
we get
EF = (b+b" —xcosb) (38)
tan x

From Figure 11(b),

cos¢ = EF/EO

1 T 1 9
= — T cos
zsinf tany [cosf \ 1+ cosy tan ¢ tanf
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1 1 — cos®# (1 + cos®) tan ¢ tanf)

{ 1+ cos® tan ¢ tanf }
__cosx cos ¢ cosf 1 —cos?6 — cost) tan ¢ sin @ cos 6
N { cos ¢ cosf + cos) sin¢ sinf }

cosf sinf tany

cosf sinf sin y

= ﬂ (sin2 f — cos® tan ¢ sinf cos 0)
sin @ sin x
1
cos( = —— (cos ¢ sinf — cosp sin ¢ cos ) (39)
sin y

Combining Equation 33 with Equations 31, 32, and 39, we get the result quoted
in Section 7.
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