
Compton Chain Algorithm

Kepler Domurat-Sousa

August 4, 2025

1 Overview of the Code

This code takes in a .phsp tuple file from TOPAS and attempts to determine the first
scatter in each Compton chain. From the determined first scatters it then creates Lines-
of-Response (LORs) that can be combined to form a complete PET image. The code
has three major parts: input of tuple data, determination of first scatters, and output
of LORs.

The code loops over the three parts, loading in and operating on one history at a
time. There is also a small amount of code that runs at startup. This startup code opens
the input and output files, records the allowed Figure-of-Merit (FOM) per scatter, and
makes any run-time parameter changes.

2 Abbreviation Names in this Note

This note requires having a common name for certain aspects of the physics, geometry,
major aspects of the code, and more. In cases where it applies just for a specific function
the variable names will be defined in the description of the function. More general terms
are defined here:

• LOR: a Line-of-Response (LOR) is the path from the first interaction of γ1 to the
first interaction of γ2. The annihilation point lies upon this line, unless an IPS
occured

• T1, T2, ...Ti: The true ordering of the scatters. This is always truth information
based, and is not used in the creation of LORs.

• R1, R2, ...Ri: The reconstructed ordering of the scatters based on the search. This
is not based on truth information and is the basis of the created LORs (from R1

of one chain to R1 of the other chain)

• FOM: The Figure-of-Merit (FOM) for the search tree. This tells how good the
reconstruction finds the path it tested to be. Two versions of this are often dis-
cussed: the FOM which is the total value for a search, and the FOM/scatter which
is used to set a FOM cutoff based on how large the searched chain is.

1

• IPS: An In-Patient-Scatter (IPS) is a history where one or more of the gammas
scattered inside of the phantom. This prevents us from determining a good line of
response.

• TOF: The Time-of-Flight (TOF) is the time from the start of a history. This is
used for the calculation of the true center of the LOR (rather than the geometric
center).

3 Startup Arguments

The code takes three setup arguments on all runs. These arguments can then be followed
by flag arguments to give additional non-default behavior. Additional changes to code
behavior can be done by changing the default values, as described in section 4.

3.1 Standard Arguments

The code has a specific first three arguments. The first argument is the .phsp file
containing the tuple information to be worked on. It is expected that this file will be
from the custom ”MyNtupleEnergy” scorer in TOPAS. Files from any other source will
lead to undefined behavior.

The second argument is the location and name for the output files. The name
should not include a file extension. On running file extensions will be added to the given
name, such as .lor, .debug, and .eng, referring respectivly to files contaning LOR data,
diagnostic information, and scatter energies.

The third argument is a floating point number of how much FOM per scatter is
allowed before hitting a cutoff. This has typically been set to 1.3, however this number
could change with modifications to how the FOM is calculated.

3.2 Additional Flags

These are additional flags that can be applied to the running of the code to do non-
standard runs. These do not cover all possible settings that the code has, just ones
that are able to be changed at run-time rather than compile-time. For the compile time
settings see section 4.

These flags are all a dash followed by a letter, such as -b. These flags may then
require another argument directly after. This is used in cases where a value must be
passed with the flag. For example the resolution changing flags (-E, -s, -t) must be
followed by a new resolution.

• -b: This flag tells the code that the .phsp file that it will be loading is in binary
format.

• -E: This flag tells the code to change from the default energy resolution to the
value directly following the flag. For example: “-E 10” would change the energy
resolution to ke = 10 keV/switch.

2

• -s: This flag tells the code to change from the default time resolution to the
value directly following the flag. For example: “-t 0.636” would change the time
resolution to 0.636 cm (50 ps FWHMt).

• -t: This flag tells the code to change from the default spatial resolution to the
value directly following the flag. For example: “-s 0.032” would change the spatial
resolution to σx = 0.032 cm.

• -h or -H: This flag tells the code to display the built in help information.

• -d: This flag tells the code to disable the time randomness applied to scatters. This
greatly simplifies some debugging methods, allowing easy reading of the center of
the predicted LORs.

4 Default Values

A group of default values for the simulation are set at the top of the .c file. These values
define things from how close two floating point values must be to be considered equal
(“#define ENG RNG 0.001”) to if output LORs should be grouped by truth information.

The default parameters include the chosen default resolution. These are “double
time uncert cm = 6.36;” giving a default time resolution of 500 ps FWHMt, or σt = 212
ps. Note that this time uncertainty is given in cm, not units of seconds. The second
default parameter is “double spc uncert = 0.1;” giving the one σx = 0.1 cm as the spatial
resolution. The third and final default parameter sets the energy resolution: “double
E per switch = 1.0;”. This gives the energy uncertainty in units of keV/switch, giving
the number of expected count of switched dye molecules by energy deposited as ke = 1
keV/switch.

4.1 Physical Constants

Three physical constants are defined: the mass of an electron (in keV), the speed of light
(in cm/ns), and the value of π. These allow easy access for calculations involving the
constants, and localize any transcription errors.

4.2 Search Settings

Many search settings are set in this area and cannot be changed at run-time. The
choice to make these only changeable at compile time was for simplicity and allowing
the compiler make additional optimizations based on these constants. The following are
search settings:

• “#define LARGEST 10” This tells the search function to only keep the brightest
10 scatters from a chain. Although this can usually be increased without the code
slowing down majorly, occasionally there can be chains with many scatters that
will cause a sudden slowdown. There may be other good solutions to speeding up
those instances.

3

• “#define SKIP 0” This defines how many scatters from the end of a chain the code
should skip. The code has generally been run with this at 0. Due to the increasing
value of δEincoming as the search proceeds down a chain, the final few scatters do
not typically cause good reconstructions to fail.

• “#define KEEP SINGLES 1” This Boolean tells the reconstruction code to keep
chains with just a single scatter. In such cases that individual scatter will be
treated as R1 for creating the LOR.

• “#define MAX SINGLE SIGMA 3.0” A limit on how much FOM a single step
in the reconstruction algorithm can accumulate. If the increase exceeds this all
branches from the step are pruned.

• “#define MIN SCAT ENG 10.0” The minimum energy (after noise-corruption) for
a scatter to exist in the scatters list.

• “#define E TRIGGER 20.0” The energy for the extremely simple trigger setup

• “#define PHI MODULES 12” The number of modules in ϕ for the extremely
simple trigger.

• “#define MODULE SEPERATION 3” The minimum number of modules sepera-
tion needed for the simple triggering.

• “#define NEVER CUT 0” A Boolean value to tell the reconstruction how to handle
not finding a Compton reconstruction that passes the FOM. If set to 1 such a
situation leads to the highest energy scattering being taken as R1.

4.3 Diagnostic Controls

A number of settings for diagnostic information exist. It is not recommened to turn
them all on at the same time. Some diagnostic data can be practically recorded for an
entire large run of data, allowing for large statistics to understand detector behavior.
Other information is highly data rich and produces files that are far to large to handle
bigger runs. All of the diagnostic settings follow:

• “#define FIRST N 5” Sets how many energies from each chain to output to the
diagnostic .eng file. This allows for checking the energies of T1...TN and R1...RN

where N = 5 by default.

• “#define READ DEBUG 0” Was used for diagnostics of the read-in, no longer
controls anything

• “#define GENERAL DEBUG 0” Turns on basic diagnostic information in a large
number of functions. This is designed to be used sending stdout to a file for
later close reading. This is also not designed for large runs, producing detailed
information on what various functions did with every history.

4

• “#define TREE DEBUG 0” Proides written information to stdout on the paths
taken by the tree search. This is typically run with the general debug on. This
information output has largely been superseded by the graphviz debug.

• “#define SCATTER LIST DEBUG 0” Prints the two sets of scatters (as they are
when passed to the search) to a file with the same name as the file of LORs but
with the .scatters extension.

• “#define GRAPHVIZ DEBUG 0” Prints formatted graphs for use with the graphviz
package. These graphs are of each search starting from a guessed first scatter and
looking for low FOM solution. The graphs contain the true scatter number Ti, the
current FOM, and the best found FOM. Although they can be read from the file,
it is recommended that the graphs should be visualized. To do this find the entry
in the file for the history and gamma that you are looking for, then run graphviz
(command line name “dot”) and make the graph into a format that is easy to read.
I have used the structure: “dot [filename] -tpdf > my tree.pdf” to make a PDF of
the tree.

• “#define LOR GROUP 0” This sets how the LORs will be output. If set to 1 the
output will be split into a .true and a .misID file. These files will contain all lors
with T1 = R1 and Ti ̸=1 = R1 respectively. If this is set to true the .lor file will be
empty

• “#define CUT IPS 0” A flag to set the .misID file to not have any IPSs included.
IPSs will not be recorded in the .true file if this flag is true or false as by definition
an IPS does not have a first scatter in the detector.

5 Custom Structures

Three custom structures are defined in truth assign.h: “event”, “scatter”, and “scat-
ter truth”.

5.1 “event”

The “event” structure is setup to contain the full information from a single line of
the .phsp input file. This information is a record of a single interaction in Geant4,
containing the history number, particle energy (in keV), energy deposited in the step
(in keV), location of the interaction (vector in cm), time of flight (ns), type of particle,
and particle ID in the history. The “event” structure can also contain a short string of
what sort of interaction created the particle. This is not currently used due to the setup
of the scorer in TOPAS. The particle type is recorded using PDG codes. The event.id
value is identifier for an individual particle within the history. It starts at 1 and counts
up as new particles are generated.

It should be noted that event.id does not increase monotonically in the .phsp file as
Geant4 follows a first-in-last-out stack pattern for running individual particles.

5

5.2 “scatter”

This structure contains all of the information needed for the search algorithm to run.
Upon creation parameterized randomization is applied to determine what the detector
recorded, giving a group of scatters. As such this should not contain true values. Truth
information is carried by a pointer to a “scatter truth” structure.

5.2.1 “scatter truth”

This is the structure containing the truth information with scatters. It can safely be
removed without breaking the search process. All diagnostic information about the
search that requires the truth information uses the data contained in this structure.

6 Scatter Handling Functions

The following functions are used for basic tasks involving “scatter” structures. These
tasks include creation, copying and freeing.

• scatter* new scatter old(vec3d* vector, double deposited, double time): Creates a
scatter using just the location, deposited energy, and TOF. Generally should not
be used, just exists to keep test expected energy() functioning as expected.

• scatter* new scatter(vec3d* vector, vec3d* dir, double deposit, double time, dou-
ble eng uncert, double space uncert, double time uncert): Creates a new scatter
with the given location, electron direction, deposited energy, TOF, uncertainty in
energy, uncertainty in space, and uncertainty in time.

• scatter* copy scatter(scatter* a): Copies a given scatter, including making copies
of the included location and direction vectors. It does not copy truth information.

• void* delete scatter(void* in): Frees all contained structures (including any truth
information) and then frees the scatter itself. Returns NULL to make this useful
with fmap() to clean up a list of scatters.

• int scatter dep compare(void* va, void* vb): Takes pointers to two scatters and
compares their energies. If the first scatter (a) has a lower energy, 1 is returned.
If the two scatters have the same energy 0 is returned. If a has a higher energy -1
is returned. This is used for sorting an array of scatters by energy.

• int partition(void** array, int low, int high, int (*f)(void*, void*)): The quicksort
partition function that is used to sort scatters by energy.

• void scatter quicksort(scatter** arr, int low, int high): The main function for doing
a quicksort on an array of scatters.

6

7 Event Handling Functions

The following functions are used for basic tasks involving “event” structures.

• event* duplicate event(event* source): Duplicates an event and all of its contents.
Returns a pointer to the new copy.

• void* delete event(void* in): frees an event and all of its components. Returns
NULL

• void* print event(void* in): Prints the contents of an event

8 Reading in Data

Data from the .phsp file is read in line by line. Each line of the file defines an event
structure. Additional lines are read until the history number changes. A list of all events
in the history can then be passed out to other functions.

The reading of an entire history is done by the llist* load history(FILE* source,
event* (*f)(FILE*)) function. In the inverse kinematics.c version in the Squires Lab
GitHub there is an error with the first history being read by “load historyb” and all
subsequent histories being loaded by “load history”. All histories should be loaded by
the latter, and this leads to a bug mangling the second history that is loaded. All
subsequent histories behave fine.

8.1 load history

This function has the form llist* load history(FILE* source, event* (*f)(FILE*)), taking
in a .phsp file (FILE* source) and the function to be used for reading a line (event*
(*f)(FILE*)). If the file to be read is binary (the -b flag was used) then read line binary
is passed, otherwise read line is used. The two line reading functions are simillar, just
using a different reading method.

load history has a static variable containing a pointer to the previous event (event*
previous event) that was recorded. At the beginning this will be a NULL pointer. In
later runs this pointer contains the first entry in the new history. As long as the history
number in the previous event when the function was called matches the read-in history
number, read in events are added to the list of events. Once an event has a new history
number it is left in previous event for the next call of the function, and a pointer to the
list of events of the loaded history are returned.

9 Trigger Functions

These functions are used to check if a given scatter would have triggered a module, and
if triggered, what module.

7

9.1 double vec to phi(vec3d* a)

This function calculates the angle ϕ of the vector a. This is calculated as arctan(
ay
ax
) = ϕ

9.2 int test vec to phi()

This is a test function for the vec to phi() function. This returns the number of passed
tests. If a test fails it prints the expected result and calculated result to stderr.

9.3 int phi trigger(scatter* a, uint modules)

This function first checks to see if the scatter has enough energy to trigger a module. If
not 0 is returned. Otherwise it determines the module that the interaction occured in
and returns that value.

10 Determining from Truth if an IPS Occured

This code next determines if an IPS occured. This information is needed to correctly
provide the diagnostic information on what the Ti value is for each scatter. This infor-
mation is also used to take actions such as cutting based on IPS if enabled.

10.1 int in patient(llist* list)

This function sets the list pointer to the start of the history list. It then calls int
rec in paitent(llist* list, int reject id) with the list and a given reject id of -1. The
recursive function then looks for the first instance of each gamma in the history. If the
first instance has a energy more than 0.1 keV from the mass of an electron then the
history is considered to have a IPS.

If the IPS was associated with the first gamma in the list a 1 is returned. If the
IPS happened to the second gamma a 2 is returned. If both a 3 is returned. If no IPS
occurred then a 0 is returned. These values allow the return value to act as both a
Boolean and a bitmask. Return & 0b1 gives if the first gamma had an IPS, return &
0b10 gives if the second gamma had an IPS.

11 double add quadrature(double a, double b)

Calculates quadrature addition, i.e. return =
√
a2 + b2

12 Calculating Compton Kinematics

This group of functions calculates predicted gamma energies based on the geometry and
deposited energies of events. All of these functions follow the convention that the gamma
went Sa → Sb → Sc This involves the following functions:

8

• double expected uncert b(double b, double theta, double uncert b, double un-
cert theta): This function calculates the uncertainty in the predicted energy δEa→b

of the gamma from Sa → Sb. The involved calculation is more completely described
in section 12.1.

• double expected energy b(scatter* a, scatter* b, scatter* c, double* uncert): The
calculated energy of the gamma from Sa → Sb. This function can also give the
uncertainty δEa→b by writing to the double pointed to by “uncert”. The equation
giving the returned energy is 3, where Edeposit is the energy deposited at Sb and
θ = ̸ SaSbSc

• double expected energy a(scatter* a, scatter* b, scatter* c): A variation on ex-
pected energy b() giving a prediction for the energy of the gamma coming into
Sa. This is done by taking the result from expected energy b() and adding the
deposited energy at Sa. This function is no longer used.

• int test expected energy(): This function tests if the expected energy functions are
behaving as expected.

12.1 Expected energy for γSa→Sb

This function determines expected energy of the gamma ray going into scatter location
b with the path Sa → Sb → Sc. The function has the form:

g(Sa, Sb, Sc) = Ea→b ± δEa→b (1)

where Sa, Sb, and Sc are scatters with location and energy information, along with
their respective uncertainties. g(Sa, Sb, Sc) will use the position information of all three
scatters, and the energy deposited information of Sb to find the energy of the gamma
ray going Sa → Sb as determined by the Compton scattering formula. The uncertainty
in this predicted energy is also calculated. The locations of Sa, Sb, and Sc will be refered
to as a⃗, b⃗, and c⃗ respectively

This calculation is based on the energy deposited in the scattering event Sb and the
angle θ between the paths a⃗b and b⃗c. These locations have uncertainties in position of
δa, δb, and δc. This gives an uncertainty in θ of approximately

δθ =

√√√√√δa2 + δb2∥∥∥a⃗b∥∥∥2 +
δb2 + δc2∥∥∥b⃗c∥∥∥2 (2)

Taking the energy deposited at Sb to be Edeposit and the uncertainty in deposited
energy as δEb the following equations can be derived from the Compton Scattering
Formula:

Ea→b =
Edeposit +

√
E2

deposit +
4Edepositme

1−cosθ

2
(3)

9

δEa→b(δθ) =
meEdepositsinθ

(1− cosθ)2
√
Edeposit +

4meEdeposit

1−cosθ

δθ (4)

δEa→b(δEdeposit) =
1

2
(

2Edeposit +
4me

1−cosθ

2
√
E2

deposit +
4meEdeposit

1−cosθ

+ 1)δEdeposit (5)

δEa→b =
√
δEa→b(δθ)2 + δEa→b(δEb)2 (6)

13 Recursive search algorithm

The main method of searching the tree of all possible scattering paths is a recursive
search of the tree. This is done by the function double recursive search(double best,
double current, double inc eng, double inc uncert, scatter* origin, scatter* loc, scat-
ter** remaining, uint remain count, llist** path). This function matches the following
equation:

f(Fbest,Fcurrent, Eincoming, δEincoming, Si−1, Si, {Si+1...SN−1}) (7)

where Fbest is the best figure of merit (FOM) found so far, and Fcurrent is the FOM
total for all previous scatters in the searched chain. Eincoming±δEincoming is the expected
energy of the gamma from Si−1 to Si. Si is the location we are checking, having an energy
deposited and a location in space. The index i is the current location in the searched
chain of scatters of length N .

Equation 7 does not match the function definition perfectly as a handful of additional
parameters must be passed for the code. A count of how many remaining scatters is
needed to determine where the end of the array of scatters is, along with when to stop
if SKIP has been set to a non-zero value. A list is also passed to provide a location to
put the list of chosen scatters to provide diagnostic information.

The energy of the outgoing gamma is also calculated based on the deposited energy.

Eoutgoing = Eincoming − Ei (8)

δEoutgoing =
√
δE2

incoming + δE2
i (9)

If the list of further scatters to be searched ({Si+1...SN−1}) is empty then we cannot
continue the search as there are no outbound paths from Si. In this case we will simply
return Fcurrent as the total figure-of-merit of the chain that lead to this situation.

13.1 For i′ = i+ 1, while i′ < N

We now iterate over the remaining scatter locations that the chain could continue down.
In each iteration we will check the quality of the path Si−1 → Si → Si′ , giving a figure
of merit value for the step.

10

We calculate the expected energy of the gamma ray going a⃗ → b⃗ using equation 1:

ECompton ± δECompton = g(Si−1, Si, Si′) (10)

The difference (Eerror) between the incoming energy and the energy predicted by the
Compton formula is then calculated.

Eerror = |Eincoming − ECompton| (11)

δEerror =
√
(δEincoming)2 + (δECompton)2 (12)

Fstep =
Eerror

δEerror
(13)

At this point it is also possible to add additional weights to the figure of merit. A
weight for the degree to which the electron’s path was out of the plane of the scatter
was previously used, however it did not substantially improve the performance of the
algorithm and so its weight has been set to zero.

13.1.1 If ((Fstep + Fcurrent < Fbest) and (Fstep < MAX SINGLE STEP))

We check that with the current step to j we have not gotten a worse total F then the
best found, and that the step did not get so much worse in this step that we should not
bother continuing along the chain. If either is the case, then we will skip the steps in
this subsection.

Otherwise, we calculate Fbelow to find the figure-of-merit of the best continuing path.
The calculation is done using the same recursive function but with Sj removed from the
list of remaining scatters.

Fbelow = f(Fbest,Fstep + Fcurrent, Eoutgoing, δEoutgoing, Si, Si′ , {S}remaining) (14)

If Fbelow is the best value figure-of-merit we have found so far we will keep that value
as Fbest, otherwise it can be discarded.

13.2 End of the recursive function

After iterating through every scatter in the list of remaining scatter locations the function
returns the value Fbest that it has found.

14 Search of a Single Sided Tree

Searches of the tree of possible scatters of γnear are constrained by the list of scatters
of γfar. Each tried first scatter for γnear has the gamma come in from the location of
one of γfar’s scatters, giving a two sided tree of scatters. This prevents the algorithm

11

from choosing a starting path other than a possible LOR. For typical searches where
there are multiple gammas in each list the each of the chosen first scatters must have
the other as the “origin” location of the initial gamma. This type of restriction is not
always wanted, either to allow greater freedom for the search algorithm or to reduce the
number of tested branches (due to better restriction of the FOM).

To run this single sided tree the function scatter* multi gamma stat iteration(llist*
history near, llist* history far, double sigma per scatter, int* best find array, float* al-
pha eng distro) is used. This function takes in a list of scatters that is to search for the
first scatter (history near), a list of scatters as origin constraints (history far), a given
FOM per scatter, and two arrays for truth information.

If there is only a single entry in the near list then that is returned if KEEP SINGLES
is true.

The two lists of scatters are converted to an array. Then these arrays are sorted by
energy, putting interactions with the highest energies at the start. This allows the search
to start with the highest energy scatters that have the highest probability of producing
good results. The energy ordering also makes removing low energy scatters easy.

The code next limits to just the LARGEST + SKIP highest energy scatters. By
default this will be 10.

The limit on FOM must now be calculated, given as Fbest = sigma per scatter ∗
LARGEST + SKIP

Taking the length of the array of near scatters Snear
j to be M and the length of the

array of far scatters Sfar
i to be N we iterate as follows:

14.1 For j = 0, while j < M

A new array of Snear
̸=j is made so that it contains all scatters in the list except the

currently chosen origin.

14.2 For i = 0, while i < N

We now call recursive search (equation 7): Ftry = f(Fbest, 0, 511., 0., S
far
i , Snear

j , Snear
̸=j).

The returned FOM Ftry is the quality of the LOR starting from Sfar
i and going to Snear

j .
If Ftry < Fbest then the current j is kept as the current best solution and Fbest is set
equal to Ftry. This makes later searches faster as the reducing Fbest limits the depth of
search of many paths.

When the iteration is completed the best found scatter is returned. If no paths pass
the FOM cutoff then NULL is returned.

15 Search of a Double Sided Tree

To produce a more constrained search a double-sided-tree is used. In these cases the far
side scatter that acts as the initial gamma direction for the search of a scatter tree must

12

be the first scatter for the search of the other list of scatters. This means that any found
solution goes from the determined R1 of the far side to the R1 of the near side.

To choose a pair of search trees that produce the best behavior a test of their com-
bined FOM is used. This is simply the addition of the two FOMs. This best combination
FOM is stored in a variable with initial condition Fbest = (sigma per scatter ∗ N) +
(sigma per scatter∗M), where the length of the array of one set of scatters Sb

j is M and
the length of the array of other scatters Sa

i is N .
We then iterate as follows:

15.1 For j = 0, while j < M

A new array of Sb
̸=j is made so that it contains all scatters in the list except the currently

chosen origin for list b.

15.2 For i = 0, while i < N

To have correct search behavior, the starting limit FOM must be reset to Fb
best =

sigma per scatter ∗M on each new tree.
The search for the quality of a tree coming from Sa

i and first scattering at Sb
j using

recursive search (equation 7): Fb
try = f(Fb

best, 0, 511., 0., S
a
i , S

b
j , S

b
̸=j)

If Fa
best ≥ Fbest then the search of the other tree can be skipped as the second search

cannot produce a result that will be better than the previous best found solution, the
first tree did not pass the cutoff.

If from the above it is reasonable to search the second tree we create a new array of
scatters Sa

̸=i for the search. We then set the limit FOM Flimit to the lower of Fa
best and

Fbest −Fa
try and then run the search: Fb

try = f(Fa
limit, 0, 511., 0., S

b
j , S

a
i , S

a
̸=i)

If Fbest > Fa
try + Fb

try then the Sa
i and Sb

j are kept as the current best two first

scatters. If that is the case Fbest is set to Fa
try + Fb

try to provide a lower limit on all
further searches.

15.3 After iteration

After iteration the function returns the pair of scatters that it found to be best. If it was
unable to find a pair then the returned array not allocated and returns NULL instead.

If a list was unable to be searched with the recursive search function (it had a length
of 1) then if KEEP SINGLES is true the single scatter is returned as one of the returned
scatters and a single sided tree search is run to find the other.

16 Creating the Chains of Scatters

The list of scatters for the tree search are made by the build scatters function. This
function takes in a detector history and the ID of the gamma that the scatters are from.
It returns the pointer to a list of the scatters.

13

The function works by finding the first instance of each electron in the list of inter-
actions. It then checks which gamma this electron was associated with by finding the
gamma interaction that is closest to this electron. If the ID of this gamma matches that
passed to the function then this electron must be added to the list of scatters.

16.1 Creation of the scatter object

After determining that the electron should be added to the list of scatters the location
of the electron is copied to be the location of the scatter. An attempt is then made to
determine the direction of the electron by checking for the location of the next interaction
of the electron. If no such location exists or is in the same location as the original location
the direction is not given a vector.

A new scatter is created using the scatter location, scatter direction, deposited energy
Edeposit as the energy of the electron in this step, TOF as the time of this electron, energy

uncertainty as Eswitch ∗
√
Edeposit/Eswitch, spatial uncertainty as spc uncert, and time

uncertainty as time uncert cm. It is important to note that at this point in the code the
data contained in the scatter object is all truth information, without any added noise.

16.2 Additional noise based on detector resolutions

To create a Gaussian distributed noise value repeated addition of random numbers is
done. Each random number is uniformly distributed from 0 to 1. By adding these values
UNCERT REP times (default 12) and then subtracting half of UNCERT REP we get a
close approximation of a Gaussian σ deviation. The noise determined as above will be
referred to as δx, δE , and δt for space, energy, and time noise respectively.

For spatial resolution the distance variation of δx is multiplied by the spatial resolu-
tion to give the total miss distance. A random ϕ and θ are then determined, with care
taken to make sure that they have correct distribution to give equal density to the entire
surface of the unit sphere. A vector is then made in the direction given by ϕ and θ with
length 1. This is then multiplied by δx times the spatial resolution. This gives the full
noise to be applied to the location of the scatter. The scatter location is updated to this
addition.

Energy resolution is somewhat more complicated due to modeling of counting fluo-
rescent dye molecules. It is assumed that the count can be determined to a high degree
of accuracy, and so the question becomes how many molecules switched. The switching
efficiency is set by E per switch, here referred to as kE . This gives the expected number
of molecules switched as N = Edep/kE . The uncertainty in this value is

√
N , giving a

noise added energy of Enoise = Edep + (δEkE
√
N). This noise adjusted energy is then

converted back into a number of switched molecules, rounded to the nearest integer
number of molecules, and converted back into an energy. The energy of the scatter is
then set to this quantized noise adjusted value. Finally the uncertainty in the energy is
set based on

√
N of this new energy value.

For time resolution the scatter time simply has δt · time uncert cm
c added to the true

time.

14

At no point in the Compton chain algorithm is the timing information used, mak-
ing its behavior independent of whatever timing system is eventually used (apart from
however timing information would change the quality of the lists of scatters).

The list of produced scatters is not assumed to be in any particular ordering, however
it is likely to be in reverse time order due to the stack-like behavior of Geant4 secondary
particle handling.

16.3 find double endpoints stat

This function takes in a detector history and creates the scatter lists, provides a large
amount of diagnostic information, and returns the found LOR endpoints. The function
has several distinct steps, each handling a different part of this process.

The function first moves to the start of the history and checks to see if there were
two gammas in the detector, and if so records the particle ID of each of the two.

Next, the function creates a list of scatters for the first and second gammas. This
is done using two calls to the build scatters function (section 16) with the two different
gamma IDs. If either list was unable to be made then the function returns a failure to
find the endpoints. If the scatter lists were made, then truth information about them is
recorded.

Next, the double tree stat iteration function (section 15) is run to find the first scat-
ter locations of each list of scatters. After some final truth information gathering these
two scatters are returned to be used as the endpoints of the LOR.

17 create lor

This code takes in two scatters and returns the LOR connecting the two. Taking a⃗ and b⃗
to be the locations of the two scatters, the following math is done: The geometric center
of the LOR is found g⃗ = 0.5 ∗ (⃗a− b⃗). Next the unit vector for b⃗ → a⃗ = b̂a is found. The
difference in time of the two scatters is then found and when combined with the unit
vector b̂a gives the offset between the geometric center and the true center of the LOR.
This then gets applied to give the true center of the LOR.

Finally, the transverse and longitudinal uncertainty are calculated from the spatial
and timing uncertainty of the scatters.

18 Depreciated Code

• llist* load historyb(FILE* source, event* (*f)(FILE*)): this function is identical to
load history but has a different static variable. This was used for separate loading
of the full truth .phsp file and detector information .phsp files.

• uint inside radius(double distance, double height, event* event): Was used to de-
termine occurance of IPS with full truth information

15

• vec3d* find annihilation point(llist *history): Was used with the full truth infor-
mation to give a measurement of LOR miss distance.

• double line to dot dist(vec3d* start, vec3d* end, vec3d* point): Used to determine
miss distance of LORs using truth information

• scatter* scattering iterator(llist* scatter list, double energy percent): An early ver-
sion of the Compton search

• scatter* multi gamma iterator(llist* history1, llist* history2, double energy percent):
An early version of the Compton search

• scatter* multi gamma ele iterator(llist* history near, llist* history far, double en-
ergy percent): An early version of the Compton search

• scatter** find endpoints(llist* detector history, double energy percent): Early func-
tion for determining first scatter pair from history list.

• scatter** find endpoints 2hist(llist* detector history, double energy percent): Early
function for determining first scatter pair from history list.

• scatter** find endpoints ele dir(llist* detector history, double energy percent): Early
function for determining first scatter pair from history list.

• scatter** find endpoints stat(llist* detector history, double sigma per scatter): Finds
the two first scatters independently rather than the current standard of requiring
both trees to connect.

• double first scat miss transverse(lor* lor, vec3d* annh loc): Determines the trans-
verse distance between a LOR and the given annihilation location.

• double first scat miss longitudinal(lor* lor, vec3d* annh loc): Determines the lon-
gitudinal distance between a LOR and the given annihilation location.

• int find annih gamma(event* item): No longer does anything for so many reasons!

16

