THE UNIVERSITY OF CHICAGO

CHARGED PARTICLE TRACKING IN AN OPTICAL TIME PROJECTION CHAMBER

A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

BY

ERIC OBERLA

CHICAGO, ILLINOIS 2015

Copyright © 2015 by Eric Oberla All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES					
LIST OF TABLES					
ABSTRACT					
1 INTRODUCTION 1 1.1 The Optical TPC 2 1.1.1 Enabling Technology: LAPPD MCP-PMT 2 1.1.2 A prototype OTPC 3					
1.2 Cherenkov Radiation 5 1.3 Outline 6					
2 DETECTOR 8 2.1 Design 8 2.2 Detector Optics 10 2.2.1 Optical properties of detector components 11 2.2.2 Optical quality of water 12 2.2.3 Detector Monte Carlo 14					
2.3 Photodetector Module 14 2.3.1 MCP-PMT and Anode 16 2.3.2 Front-end data acquisition 18 2.4 Single photo-electron response 21					
3 EXPERIMENTAL SETUP 26 3.1 MCenter Test Beam 26 3.2 Operational Configuration and Timing Systematics 29 3.3 The Trigger 32 3.3.1 Beam trigger system 32 3.3.2 Fast level-0 trigger 33					
4 DATASETS 34 4.1 Efficiency, Occupancies, and Gain 34 4.1.1 Forming an event 34 4.1.2 Photo-detection efficiency 36 4.1.3 Occupancy and Gain 37 4.2 Trigger Information 38 4.3 Feature Extraction 40					
APPENDICES 41					

А	WAV	/EFOR	M SAMPLING & THE PSEC4 ASIC	42
	A.1	Motiva	ation for a new chip design	42
	A.2	Introd	uction to PSEC4	43
		A.2.1	Towards 0.13 μ m CMOS	43
	A.3	PSEC4	4 Architecture	46
		A.3.1	Timing Generation	46
		A.3.2	Sampling and Triggering	49
		A.3.3	Analog-to-Digital Conversion	50
		A.3.4	Readout	50
	A.4	Calibra	ation	51
		A.4.1	Linearity and Dynamic Range	51
		A.4.2	Sampling Calibration	54
	A.5	Perform	mance	56
		A.5.1	Sample Leakage	57
		A.5.2	Noise	58
		A.5.3	Power	59
		A.5.4	Frequency Response	60
		A.5.5	Waveform Timing	64
В	G4B	EAML	INE FLUX SIMULATIONS	67
	B.1	Beam	Monte Carlo	67

LIST OF FIGURES

1.1	LAPPD timing and spatial resolutions							2
1.2	The OTPC concept		•					4
1.3	Cherenkov radiation and the OTPC optics \hdots							7
2.1	Bear-view scale drawing of OTPC detector							9
$\frac{2.2}{2.2}$	3D rendering of the OTPC detector in Chroma		•	•••	•	•	•	9
2.2	Spectral efficiency of detector components	•••	•	•••	•	•	•	12
$\frac{2.0}{2.4}$	Optical attenuation length in water	• •	•	• •	•	•	•	14
2.5	Simulated muon track in OTPC	•••	•	•••	•	•	•	15
$\frac{2.6}{2.6}$	PHOTONIS Planacon MCP-PMT mounted on transmission line as	 node	e h	 ເດຄ	rd	•	•	17
2.7	OTPC front-end DAQ							19
2.8	Single photo-electron event							21
2.9	Propagation delay along anode microstrip							$\frac{-1}{22}$
2.10	Photon position reconstruction							${22}$
2.11	Single p.e. time resolution							25
3.1	The OTPC mounted in the MC7 enclosure hall	• •	•		•	•	•	27
3.2	Time structure of test-beam spill and data collection	• •	•		•	•	•	28
3.3	Track multiplicity per triggered event, simulated	• •	•		•	•	•	30
3.4	Diagram of beam trigger	• •	•		·	•	•	33
4.1	Efficiency							36
4.2	OTPC channel occupancy							37
4.3	OTPC channel gain							38
4.4	Output beam profile using position and time-sensing MCP-PMT.							39
4.5	Beam trigger time-of-flight							39
4.6	Least-squares fitting of double-photon channel							40
A.1	The PSEC4 layout	•••	•		•	•	•	44
A.2	Block diagram of PSEC4 control	•••	•	• •	•	•	•	47
A.3	Schematic of the integrated PSEC4 cell structure	•••	•	•••	·	•	•	48
A.4	Sampling rate as a function of feedback voltage control	• •	•	• •	·	·	•	48
A.5	ADC linearity	•••	•	• •	•	•	•	52
A.6	ADC voltage linearity	•••	•	• •	•	•	•	52
A.7	Ring oscillator clock stability	• •	•	•••	·	•	•	53
A.8	Temperature stability of the ADC transfer function	• •	•	• •	·	·	•	53
A.9	PSEC4 time-base calibration	• •	•	•••	·	•	•	55
A.10	Digitized 400 MHz sine wave after calibration	•••	•	•••	·	•	•	55
A.11	Time-base calibration stability	• •	•	•••	·	•	•	56
A.12	The PSEC4 evaluation board	• •	•	•••	·	•	•	57
A.13	Current leakage as a function of input voltage	• •	•		•	•	•	58
A.14	Electronics noise	• •	•	• •	•	•	•	59
A.15	Power consumption	• •	•		•	•	•	60
A.16	PSEC4 analog bandwidth		•		•	•	•	61

A.17	Crosstalk correlation ellipses	63
A.18	High frequency linearity	64
A.19	Fitting a PSEC4 digitized waveform	65
A.20	PSEC4 fitted time resolution	65
B.1	Plan view of the MC7 enclosure	68
B.2	Inclusive beam at OTPC, 8 GeV/c π^+ simulated	68
B.3	Inclusive beam at OTPC, 16 GeV/c π^+ simulated	69
B.4	Triggered beam at OTPC, simulated	70
B.5	MCenter counts vs. supercycle time	71

LIST OF TABLES

$2.1 \\ 2.2$	Indices of Refraction	12 20
$3.1 \\ 3.2$	16 GeV/c π^+ secondary beam flux at OTPC	29 31
4.1	Signal selection thresholds	35
A.1	PSEC4 specifications and performance	66
B.1	8 GeV/c π^+ secondary beam flux at OTPC	67

ABSTRACT

A first experimental test of tracking relativistic charged particles with a water Cherenkov optical time projection chamber (OTPC) is described. Using planar micro-channel plate photo-multiplier tubes (MCP-PMT) coupled to an anode of 50Ω microstrips, we have demonstrated the ability to measure the time and 2D spatial coordinates of individual optical photons. With a single photon time resolution better than 100 ps and spatial resolutions of a few mm, it is feasible to use the relative timing and detected positions of Cherenkov photons to reconstruct the particle trajectory. The detector consists of a 77 cm long, 40 kg cylindrical water mass instrumented with a combination of commercial 27 cm^2 MCP-PMTs and 45 cm^2 mirrors in a stereo configuration. For each MCP-PMT, a mirror is mounted on the opposing side of the detector allowing an increase of the photo-detection efficiency by time resolving the direct and reflected Cherenkov light. A 180-channel data acquisition system digitizes the MCP-PMT signals using the PSEC4 waveform sampling chip operating at 10 Gigasamples-per-second. The detector was installed on the Fermilab MCenter test-beam in a location where the primary flux is multi-GeV muons. Muon tracks are reconstructed in 3D by fitting the time-projection of detected Cherenkov photons along the vertical and azimuth axes of the detector. Tracking resolutions of AAA cm and BBB 20 mrad are shown.

CHAPTER 1 INTRODUCTION

1

2

The concept of the time-projection chamber (TPC) was introduced in 1974 by Nygren as a 3 novel tracking detector to study e^+e^- collisions. This technological advancement was a "new 4 approach to the problems of track recognition and momentum measurements of high energy 5 charged particles", particularly in environments with large magnetic fields and high track 6 multiplicity [1]. The first TPCs were gaseous detectors in which a strong electric potential, 7 which is applied between a central cathode and a segmented readout anode comprised of 8 multi-wire proportional chambers, runs parallel to a solenoidal magnetic field. A high mo-9 mentum charged particle traversing the volume ionizes the gas, enabling the freed electrons 10 to drift in an ideally straight path to the anode. Serving as a proxy for the charged particle, 11 these 'drifting' non-relativistic electrons are time-projected on the anode, allowing the par-12 ticle's 3-D path and its ionization loss (dE/dx) to be measured with 100 μm precision and 13 3% resolution, respectively [2, 3, 4]. 14

Since its original application the TPC has been adapted and applied to other areas of particle and astro-physics. In particular, the use of cryogenic liquid Argon TPCs for neutrino detection was proposed soon after the invention and is now a prevalent technology in contemporary and planned future detectors [5]. In these TPCs the neutrino flavor and interaction kinematics are inferred through calorimetry and tracking of the outgoing charged lepton (in the case of a charged current interaction) and/or recoil particles.

Water Cherenkov and liquid scintillator detectors are among non-cyrogenic technologies for neutrino oscillation physics experiments. Due to their directionality, the prompt Cherenkov photons generated along a particle trajectory are uniquely suited to track charged particles [6]. The photosensors used in these experiments are conventional photo-multipliers (PMTs), which are one-pixel devices with single photon time resolutions > 1 ns [7, 8]. In an event window of several nanoseconds, the PMTs are capable of discerning the total number and the aggregate time of the prompt photons. High granularity particle tracking is not ²⁸ possible in these primarily ring-imaging detectors, though event and vertex reconstruction
²⁹ techniques are sophisticated [9].

30

1.1 The Optical TPC

In this thesis, we investigate a new type of charged particle tracking TPC using Cherenkov radiation in a water detector. Applying photo-detection technology developed by the Large-Area Picosecond Photo-Detector (LAPPD) collaboration [10], it is possible to tag individual photons with spatial and timing resolutions of $\leq 3 \text{ mm}$ and $\leq 100 \text{ ps}$, respectively, while instrumenting relatively large areas [11, 12]. Each photon can now be resolved in 3-dimensions (2 space + 1 time) permitting the concept of a 'photon-' or 'optical-' time-projection chamber (OTPC) using Cherenkov light generated along a particle track.

1.1.1 Enabling Technology: LAPPD MCP-PMT

Figure 1.1: LAPPD MCP-PMT spatial vs. timing resolutions for different anode architectures. With the economical glass-package, the single photon resolutions are $\leq 3 \text{ mm}$ and $\leq 100 \text{ ps}$. Figure courtesy of J. McPhate, SSL.

To realize an optical-TPC, a low time-jitter and high granularity photosensor is needed 39 to augment conventional single-pixel PMTs in a water Cherenkov detector. Micro-channel 40 plate photomultiplier tubes (MCP-PMT) are inherently low-jitter amplifying devices due 41 to the relatively small variation in electron path lengths in the dynode. Measured single 42 photon jitter can be better than 50 ps with signal rise times <100 ps [13, 14]. Through novel 43 fabrication techniques and low-cost materials, the LAPPD project is developing 20×20 cm² 44 active-area MCP-PMTs that are intended to be economically scalable to instrumenting large 45 detectors [11, 12, 15, 16]. 46

The spatial resolution in an MCP-PMT is largely determined by the anode design that 47 sets the number of MCP pores, and hence the effective pixel size, which will be coupled 48 together in readout. The spatial vs. timing resolution for the full signal range of LAPPD 49 MCP-PMTs is shown in Figure 1.1 for different anode geometries. For the glass hermetic 50 package, an array of parallel of microstrip lines allows an economical readout scheme while 51 preserving good time resolution [17]. To have a precise, \sim micron-level imaging detector, 52 a more expensive cross-strip anode can be implemented in a ceramic package at a cost in 53 timing resolution. 54

55

1.1.2 A prototype OTPC

To demonstrate this technique, we have built a 40 kg water Cherenkov detector using a combination of commercial MCP-PMTs and optical mirrors. A concept drawing of the optical setup of for this detector is shown in Figure 1.2. For each planar MCP-PMT mounted on the water volume, a mirror is mounted on the opposing side creating an image of the Cherenkov light hitting the opposing wall. For a given charged particle track, the mirror adds a discrete set of reflected photons that are time-resolved, thus economically doubling the photodetection efficiency over the angular acceptance of the detector.

As the LAPPD MCP-PMTs are not yet available, this prototype relies on commercial
 MCP-PMTs that exhibit the same detection resolutions, but with 1/16 the photo-active area

Figure 1.2: The concept of the prototype water-based OTPC. A charged particle emits Cherenkov light in the water volume. For each time and spatial-resolving MCP-PMT (left), a mirror is mounted on the opposing side. The mirror adds a discrete reflected set of photons (green) that can be time resolved from the direct Cherenkov light (yellow).

per unit. The commercial photo-detector used is Planacon XP85022 MCP-PMT device from PHOTONIS [18]. The total photo-coverage in the prototype OTPC is only 125 cm^2 over the surface ~1700 cm^2 enclosing the fiducial volume.

68

1.2 Cherenkov Radiation

⁶⁹ A charged particle exceeding the speed-of-light in a dielectric medium will emit coherent ⁷⁰ Cherenkov radiation in a thin conical volume symmetric about the particle trajectory at a ⁷¹ polar angle of θ_c given by

$$\cos\theta_c = \frac{1}{n\,\beta}\tag{1.1}$$

⁷² where *n* is the phase index of refraction of the medium. In a realistic detector the medium ⁷³ will be dispersive, such that $n = n(\omega)$, giving rise to a distribution of θ_c 's. In a dispersive ⁷⁴ medium the Cherenkov wavefront does not travel perpendicular to the photon propagation ⁷⁵ direction. Rather, the opening angle of the wavefront with respect to the particle direction, ⁷⁶ η , is derived by Tamm

$$\cot(\eta) = \frac{d}{d\omega} (\omega \, \tan \theta_c)|_{\omega_o} =$$

$$(\tan \theta_c + \beta^2 \omega \, n(\omega) \, \frac{dn}{d\omega} \cot \theta_c)|_{\omega_o}$$
(1.2)

⁷⁷ in which ω_o is the center frequency over the limited optical wavelength range of interest [19, ⁷⁸ 20]. The first term in Eqn. 1.2 is the θ_c complement angle and the second term contributes ⁷⁹ a dispersion dependent factor that will be positive within a normally dispersive wavelength ⁸⁰ range ($\frac{dn}{d\lambda} < 0$) in a medium. The Cherenkov emittance and opening angles are shown in ⁸¹ Figure 1.3 in the context of the OTPC

The condition that $\eta + \theta_c < 90^{\circ}$ in dispersive media is explained by the fact that the Cherenkov photons, which are generated at an angle specified by the phase velocity of the dielectric medium, propagate at the speed at which energy is transported in the dielectric: the group velocity. As shown in Ref. [21], the group velocity is expressed as

$$v_g(\omega) = \frac{c}{n_g(\omega)} = \frac{c}{n(\omega) + \omega (dn/d\omega)}$$
(1.3)

where the group index, n_g , is both greater in magnitude and more dispersive than n [22, 23].

87

1.3 Outline

The implementation of LAPPD MCP-PMTs neutrino physics experiments has been proposed in several applications [24, 25, 26, 27]. These applications share a common goal of using precision timing and digital 3D photon tagging to significantly enhance the reconstruction of neutrino interactions in non-cryogenic liquid detectors [28]. By building an MCP-PMT-equipped 40 kg water Cherenkov detector, this thesis presents a proof-of-principle of reconstructing charged particle tracks in an OTPC.

A realistic experiment will face similar challenges as it will likely be economically impossible to instrument 100% of a water Cherenkov detector with MCP-PMTs. It will then be necessary to use a limited coverage of fast timing and high spatial granularity photodetectors to reconstruct OTPC-generated track segments. These track segments, in combination with additional conventional PMT coverage, can be stitched together to complete the time-sliced picture of the event.

In the following chapters, the implementation and results from a prototype OTPC detector are described. The detector design, optical properties, photo-detection, and electronics readout is discussed in Chapter 2. Chapter 3 describes the the experimental setup and installation at the Fermilab National Laboratory test-beam facility. Chapter 4 presents the test-beam datasets and Chapter 5 follows with an analysis of these data and the detector performance. Finally, Chapter 6 concludes and discusses future considerations with this technology.

Figure 1.3: Two-dimensional projection of the Cherenkov light generated by a relativistic charged particle (heavy, black arrow) and the OTPC optics.

CHAPTER 2 DETECTOR

The OTPC is a small-scale, prototype detector that was constructed to demonstrate the principle of tracking high momentum charged particles through a water volume in a cosmic ray and test-beam setting. The following sections cover an overview of the detector: the OTPC design (§2.1), the detector optics (§2.2), and the photodetector module (§2.3).

113

107

108

2.1 Design

The detector is constructed from a 24 cm inner-diameter Poly-Vinyl Chloride (PVC) cylindrical pipe cut to a length of 77 cm. Six 11 cm diameter ports were machined in the tube arranged in 2 columns of three ports each along the cylindrical axis. These columns have an azimuthal separation of 65°. The photodetector modules (PMs), described in §2.3, are mounted on five of these ports. The column with 3 PMs installed is denoted the 'normal' view and the other the 'stereo' view. The dual views are shown in a rear-view drawing of the OTPC in Figure 2.1.

For each PM, a first-surface broadband optical mirror is mounted on the opposing wall facing the PM port. The 7.6 cm square mirrors are installed on the interior wall of the cylinder at an angle of 48°, which is denoted as θ_{mirror} in Figure 1.3. Consequently, the mirrors protrude somewhat into the detector volume giving a horizontal distance from the mirror center point to the PM port of ~20 cm. A rendering of the OTPC detector is shown in Figure 2.2 as modeled in Chroma [29].

The remaining exposed PVC surfaces of the interior wall were painted with light absorbing paint [30]. An economical choice of outdoor rated black matte spray paint was used. Multiple coats were applied after lightly sanding in between.

The detector is filled with 40 L of deionized water for the target volume. Because of the detector angular acceptance, the Cherenkov light directionality, and since only the first

Figure 2.1: Rear-view scale drawing of OTPC detector showing the normal and stereo MCP-PMT mounting positions. The normal and stereo mounted PMs are bisected by the x-axis in the OTPC coordinate system by an angle Φ_{det} of 32.5° . The beam comes out of the page in the +z direction

Figure 2.2: Two renders of the OTPC detector made using Chroma [29]. On the left is a side view that shows the water tank with the PM ports mounted in the normal and stereo views. The right is a view down the center of the detector tank and the mirrors (red) mounted in the inner volume.

five the ports are instrumented, the effective fiducial volume is limited to roughly the top two-thirds of the total volume. This sets the OTPC fiducial mass of ~ 27 kg.

134

2.2 Detector Optics

With low-timing jitter and high granularity MCP-PMTs, the water chromaticity and scattering properties become important as the distance from track to photo-detector increases. However, we can ignore these effects due to the prototype-OTPC short drift lengths (<30 cm), we can assume $v_{\gamma_2} = v_{\gamma_1} = \langle v_{group} \rangle$. The path length difference depends on the emittance angle, $\theta_c(\omega)$ and the particle angle, θ_i . Again considering the dispersion effects negligible in this application, $\theta_c(\omega) = \cos^{-1}(\frac{1}{\beta < n >})$ and is constant.

¹⁴¹ Consider a particle traveling through the OTPC as shown in Figure 1.3, but further ¹⁴² generalizing the track by allowing a polar angle, θ_i , with respect to the z-axis in the plane. ¹⁴³ Two Cherenkov photons generated along the particle path generated at t = 0 and $t = t_0$ are ¹⁴⁴ detected with a relative time and position of $\Delta t_{\gamma_{21}} = t_{\gamma_2} - t_{\gamma_1}$ and $\Delta z_{\gamma_{21}} = z_{\gamma_2} - z_{\gamma_1}$. The ¹⁴⁵ relative timing is given by

$$\Delta t_{\gamma_{21}} = t_o + \left(\frac{L_{\gamma_2}}{v_{\gamma_2}} - \frac{L_{\gamma_1}}{v_{\gamma_1}}\right) = t_o + \frac{\Delta L_{\gamma_{21}}}{\langle v_{group} \rangle}$$
(2.1)

where $\Delta L_{\gamma_{21}}$ is the path length difference and $\langle v_{group} \rangle$ is the weighted average of the group velocity over the optical range of the detector. The experimentally measured time projection and z-projection in terms of the track variables

$$\Delta t_{\gamma_{21}} = t_o \left(1 - \frac{\beta c}{\langle v_{group} \rangle} \tan \theta_i \right)$$
(2.2a)

149

$$\Delta z_{\gamma_{21}} = \beta \, c \, t_o \, \cos \theta_i \tag{2.2b}$$

¹⁵⁰ A useful relation is the ratio of the time-projection to the z-projection. The ratio over an

¹⁵¹ infinitesimal track length is

$$\frac{dt}{dz} \approx \frac{1}{\beta c} - \frac{\tan \theta_i}{< v_{group} >}$$
(2.3)

¹⁵² for small angles along a path parallel to the detector plane.

The OTPC drift speed in Eqn. 2.3 is given by $\langle v_{group} \rangle$. In a electron-drift TPC, the first term in Eqn. 2.3 is negligible due to the relatively slow drift speeds¹, and dispersion thereof, compared to that of the charged particle. In an OTPC, the photon velocity is comparable with the particle speed in the lab frame enabling the potential to measure β along the track. The first term, $1/\beta c$, in Eqn. 2.3 is equivalent to $\frac{\cos \theta_c}{\langle v_{phase} \rangle}$.

An additional set of photons is detected at each MCP-PMT from a mirror mounted on the opposite side of the inner cylinder as shown by γ_3 in Figure 1.3. This not a specific feature of an OTPC, but is used to increase the the limited photocathode coverage.Each mirror is mounted at an angle, θ_{mirror} of 90° - θ_c . For a small range of particle angles, the mirror creates a time-delayed image of the Cherenkov light on the opposing wall at the MCP-PMT.

The discrete mirror positions offer a handle on the longitudinal track location across a single MCP-PMT by using the measured time difference between the direct and mirrorreflected Cherenkov light. The displacement, r, from the OTPC center-line is given by

$$r = \frac{\tan(\theta_c)}{2} \frac{\Delta t_{mirror} - D / \langle v_{group} \rangle}{\frac{1}{\langle v_{group} \rangle \cos \theta_c} - 1 / \beta c}$$
(2.4)

where Δt_{mirror} is the measured time difference at the MCP-PMT and D is the inner cylinder diameter.

169

2.2.1 Optical properties of detector components

The transmission, reflection, and spectral efficiency of the various OTPC components define the energy bandwidth and quantity of Cherenkov light photons detected. The indices of

^{1.} For a liquid argon TPC of the electron drift speed is on the order of a few $mm/\mu s$: $(v_{drift}/c \sim 10^{-5})$ [31]

Table 2.1: Indices of Refraction of the OTPC optical coupling from the water volume to the MCP-PMT photocathode.

Volume	Thickness	n at 400 nm
DI H ₂ O	n/a	1.34
Fused silica port	$3.175 \mathrm{~mm}$	1.47
Optical coupling gel	$\sim 1 \text{ mm}$	1.47
MCP-PMT fused silica window	<2 mm	1.47
MCP-PMT borosilicate window	<2 mm	1.51

Figure 2.3: Optical properties of the OTPC optical components over wavelength range of 200 to 700 nm. These parameterizations are used to model the optical properties in the Chroma OTPC simulation.

refraction encountered by the light path from the water volume to the MCP-PMT photocathode are shown in Table 2.1. Losses from reflection due to polarization at the water-fused silica port interface are minimal. In fact, the direct in-plane polarized Cherenkov light hits the window near the Brewster angle for small-angled tracks. An optical coupling gel is used to prevent total internal reflection at the OTPC port and phototube window interface.

The properties of the detector components over the optical and near-UV range is shown in 2.3. The data are taken from the various manufacturers [18, 30]. Despite efforts to capture as much near-UV Cherenkov light as possible by using fused-silica components, the optical coupling gel cuts off these wavelengths. Not shown is the light absorbing paint, which was modeled with a broadband 95% absorbance and a 5% diffuse reflectance. These properties were used to parameterize the surfaces in the Chroma detector simulation.

183

2.2.2 Optical quality of water

The optical quality of the OTPC water volume is notably poor, but isn't too much of a limitation for short photon path lengths. Measuring 1-cm-deep samples with a spectrophotometer at various post-fill intervals, we measured the water attenuation length as shown in Figure 2.4. Compared to a pure water standard, the absolute absorbance at over the 300-500 nm range is 50 to 100 times worse².

This can be attributed to several factors. One, there is no filtration system to remove particulates in the volume. Second, in the 12 hr and 60 day measurements a noticeable degradation in the near-UV part of the spectrum was observed. This is likely attributed to UV stabilizers in the PVC enclosure leaching into the water [33]. In any case, data presented are from runs in which the optical quality was at or better than the 6 hr attenuation curve. With a 1/e attenuation length > 0.5 m at 300 nm, the longest path lengths in the OTPC are ~0.3 m.

^{2.} Also compared with the Super-K experiment, which regularly measures attenuation lengths of 100 m in the 350-500 nm range [32]

Figure 2.4: Calculated attenuation length of the OTPC water samples over a wavelength range of 250 to 720 nm using data obtained from dual-beam spectrophotometer measurements.

2.2.3 Detector Monte Carlo

A detector simulation was created for the OTPC using Chroma [29], In this simulation, the water volume, geometry, and optical properties of the OTPC components are fully modeled from data presented in previous sections. In the top frame in Figure 2.5, the ideal OTPC responses two 1 GeV muons entering the detector at the same point, but at different angles, are shown. The direct and mirror reflected hits at each of the 5 photo-detector modules are visible, separated by \sim 800 ps. The entire event occurs in about 2 ns.

The bottom frame shows the linear-fit residuals when fitting the direct Cherenkov light at each photo-detector from the straight-going ($\theta = 0^{\circ}$) muon. Before fitting, the data were smeared with (optimistic) 20 ps timing errors.

206

196

2.3 Photodetector Module

The OTPC is instrumented with five Photodetector Modules (PM), which provide the photon detection, signal readout, analog-to-digital conversion, and send data packets to the upstream system. The PM components are discussed in detail in the following sections:

Figure 2.5: Two 1 GeV muons simulated in the fully modeled OTPC detector using Chroma. The muons enter the OTPC water volume at the same position, but with angles (θ, ϕ) of red: (0,0) and blue: (3,3) degrees. For clarity in demonstrating the operation principle, the OTPC detected photon response in the upper frame assumes a perfect resolution. Fitting the direct Cherenkov light for the (0,0) muon track after smearing the time response at 20 ps, the linear residuals are shown in the bottom frame.

Section 2.3.1 covers the commercial Planacon MCP-PMT and its transmission line anode readout. Section 2.3.2 discusses the readout electronics system built around the PSEC4 waveform digitizing ASIC. Results from characterization tests with a single-photon laser are presented in §2.4.

214

2.3.1 MCP-PMT and Anode

The photo-detector used on the OTPC is the commercial 'Planacon' XP85022 MCP-PMT device from PHOTONIS [18]. These square devices have a $5 \times 5 \text{ cm}^2$ photo-active area and an anode comprised of a 32×32 square pad array with a 1.6 mm pad pitch. The 3 MCP-PMTs mounted in the normal view are $25 \ \mu\text{m}$ MCP-pore-size tubes with fused silica front windows manufactured in 2014-15. On the stereo view are 2 MCP-PMTs: One from the same manufacturing run and another considerably older MCP-PMT with a borosilicate front window. The latter MCP-PMT exhibited relatively inferior gain and detection efficiency.

While reading out each of the Planacon's 1024 anodes might provide the best-case gran-222 ularity and pileup per channel, it is not a scalable nor an economical option when instru-223 menting a detector with many such photo-detectors. Instead, we adopt a similar microstrip 224 readout scheme as the first-generation glass package LAPPDs [17, 34]. A thirty-two channel 225 microstrip anode PCB board was designed such that a column of 32 anode pads is mapped 226 to a single 50 Ω line. The characteristic impedance is determined by the layout geometry 227 and the dielectric properties [35]. Each microstrip line serves as both the DC return and the 228 high fidelity signal path for $\frac{1}{32}$ of the MCP-PMT. The board-mounted photo-tube is shown 229 in Figure 2.6. 230

The accelerated electron shower from the MCP will induce a transverse electro-magnetic wave between the microstrip's signal and reference plane 3 . Once created, this wave will

^{3.} More accurately the microstrip mode is 'quasi-TEM' for frequencies > 0. When a wave is induced in the microstrip, the fields are no longer static and the wave propagates in both the dielectric region between conductors and the air gap above the signal conductor. This introduces longitudinal field components, which remain considerably smaller than the transverse fields [36].

Figure 2.6: A PHOTONIS XP85022 Planacon MCP-PMT mounted on a custom thirty-two channel, 50 Ω transmission line anode board is shown in the top photograph. The Planacon has an anode of 1024 pads in a 32 × 32 array over the 5 × 5 cm² active area. These are mapped to the microstrip anode readout card in rows of 32. The bottom diagram outlines the technique for using the single-channel waveform timing to extract the incident photon (γ) position along the transmission line. The times of the direct and open-end reflected waves on the anode microstrip are denoted by t_1 and t_2 .

propagate equally along both directions on the 1D microstrip. A set of 2 high-channel density coaxial cables bring these waveforms off the board. The readout strategy adopted for the OTPC is to digitize the waveform on the microstrip at only 1 anode terminal, leaving the other terminal open (high-Z). Thus, the wave that initially propagates toward the openend will be reflected with the same polarity back along the transmission line towards the digitizer.

For a single photo-electron signal, the digitizer will record two transient waveforms along the microstrip. The times of the direct and open-end reflected waves, t_1 and t_2 can be extracted from these transients. Figure 2.7 diagrams this technique. Using the measured times we can solve for the incident photon position, x, and time-of-arrival, t_0 . The measured times, t_1 and t_2 are expressed by

$$t_1 = t_0 + \frac{1}{v_{prop}} \left(\frac{D}{2} - x + C_2\right)$$
(2.5a)

244

$$t_2 = t_0 + \frac{1}{v_{prop}} \left(\frac{3D}{2} + x + C_2 + 2C_1\right)$$
(2.5b)

where D, C_1 , and C_2 are the microstrip lengths of the MCP-PMT footprint, the reflected wave cable length, and the direct wave cable length respectively. The wave speed is v_{prop} . Solving these equations for x, the longitudinal position, and t_0 , the photon hit time, yields:

$$x = v_{prop} \, \frac{t_2 - t_1}{2} - \frac{D + 2 \, C_1}{2} \tag{2.6a}$$

248

$$t_0 = \frac{t_2 + t_1}{2} - \frac{1}{v_{prop}} (D + C_2 + C_1)$$
(2.6b)

249

259

The total length of the transmission line is $D + C_2 + C_1$. In many cases, the information of interest is the relative timing between photon hits allowing the constant term in Eqn. 2.6b to be dropped.

²⁵³ Practically, we use a 10" (25.4 cm) high density coaxial cable to provide delay for ²⁵⁴ the reflected signal and an identical 6" (15.2 cm) cable to connect the microstrip card ²⁵⁵ to the waveform digitizer board. The micro-coaxial cable has a a propagation delay of ²⁵⁶ 4.265×10^{-3} ns/mm with corresponding per-unit length RC characteristics of 0.381 mΩ ²⁵⁷ and 0.089 pF [37]. These lossy transmission line properties attenuate the further traveled ²⁵⁸ reflected wave with respect to the direct waveform.

2.3.2 Front-end data acquisition

The waveforms on the anode microstrip of each PM are digitized at 10.24 Gigasamples-persecond (GSPS) using the ACquisition and Digitization with pseC4 (ACDC) card. This card

Figure 2.7: The OTPC front-end: the ACquisition and Digitization with pseC4 (ACDC) card. The ACDC card is a 30-channel waveform digitizing board using the waveform-recording PSEC4 ASICs running at a sampling rate of 10.24 GSPS. A 1 GHz 20 dB voltage amplifier card is plugged in the mezzanine slot and the MCP-PMT signal is plugged into the board-to-board slot furthest on the right.

uses 30 channels of the PSEC4 ASIC with an analog bandwidth ≥ 1 GHz [38]⁴. The digitized waveforms from the PSEC4 chips are sent to an on-board FPGA, which buffers the digital data. Serial communication and data readout to the system DAQ is performed over a dual CAT6 LVDS link. The ACDC board is pictured in Figure 2.7.

The PSEC4 has a signal voltage range of 1.1 V digitized in 10.5 bits above noise. To fully exploit this dynamic range, a calibration look-up-table for each switched capacitor sample cell is required. However, for small signals that cover less then 50% of this range, the raw ADC count PSEC4 output deviates less then 1% from linearity. This error is acceptable since the typical single p.e. signals are less than 200 mV. A pedestal voltage of 0.8 V is set for the OTPC data runs, allowing ample headroom for negative polarity pulses.

The ACDC runs off a 40 MHz clock that is distributed to the 5 PSEC4 ASICs and

^{4.} This reference is included and supplemented in Appendix A

Table 2.2: Coarse DNL time-base calibrations for the PSEC4 ASIC. The wraparound is the PSEC4 time-step from sample $255 \rightarrow$ sample 0.

Time step Δt_n	Value [ps]
[0,254]	96.5
255	393.3

FPGA using an on-board jitter cleaning PLL chip⁵, This clock is up-converted in PSEC4 ASIC using a voltage-controlled delay line (VCDL) to achieve a 10.24 GSa/s sampling rate over 256 sample cells. Though an enabling and power efficient means of garnering high sampling rates, the time-steps in a VCDL-controlled switch capacitor array are non-uniform due to process variations in the integrated circuit fabrication. Calibrations of the time-base in the PSEC4 and related CMOS chips are discussed in Refs:[38, 39, 40, 41].

There are two sources of error in the PSEC4 times-base: the differential non-linearity 279 (DNL), the and the integral non-linearity (INL). The DNL is the cell-to-cell time-base vari-280 ation from the nominal time-step and the INL is a measure of the aggregate deviation over 281 many sampling cells. In this application, we apply a crude calibration that considers the 282 average DNL over the PSEC4 time-base as shown in Table 2.2. The time-steps between 283 sampling cells are defined as $\Delta t_n := t_{n+1} - t_n$. In this inexact, but expeditious calibration 284 the sampling step is assumed to be uniform over the first 255 cells. The PSEC4 'wraparound' 285 is considered separately and has a much larger time-step. 286

The OTPC has 5 PM modules and a trigger module that are read out with an ACDC card, for a total of 180 PSEC4 channels. A mezzanine 20 dB pre-amp board is used on the 5 PM ACDC boards to bring the MCP-PMT single p.e. signals to a trigger-able amplitude. The front-end boards are plugged into 2 central system cards, which distribute the clock and buffer the data from the ACDC cards. Interfacing with a linux PC in the beam enclosure, the central cards communicate over a parallel USB 2.0 protocol.

^{5.} TI CDCE62005 clock generator/jitter cleaner

Figure 2.8: Single photo-electron recorded by the PM using a pulsed laser. The left figure shows the ACDC channel vs. PSEC4 sample number with the color indicative of the digitized value in PSEC4 ADC counts and the corresponding PSEC4 waveforms are shown on the right. This shows typical single p.e. system response, in which the 2 peaks are the direct and reflected pulses on the anode microstrip.

293

2.4 Single photo-electron response

A laser test-stand was built to characterize the single photo-electron (p.e.) response of the PMs. A 405 nm PiLas laser was used in pulsed mode, which can achieve pulse widths of 33 ps FWHM [42].

²⁹⁷ Single-photon

In the single photon mode, an iris is placed on the free-space output of the PiLas optical head, which picks off a 1 mm diameter portion of the beam. The iris is place a few mm off the incident beam axis in order to pick up a ~0.5 attenuation fraction. Following the iris is an optically thick neutral density filter to attenuate the beam to the single-photon level. The single photon collection mode is corroborated by the data set statistics: ~5% of the events recorded have a laser-correlated signal.

Figure 2.8 shows the PM response to a single p.e. Typical signals are on the order of 100 PSEC4-ADC counts (~25 mV) for the first pulse and somewhat less for the time-lagged

Figure 2.9: (a) Fitted time-difference along the MCP-PMT using the autocorrelation and waveform fits. The 1 mm diameter laser beam was scanned across the MCP-PMT surface, parallel to the microstrip direction, at 4 points separated by 4.5 mm. The resolution is \sim 35 ps. (b) Fitting for the propagation delay along the microstrip line, using data from (a). The error bars are multiplied by 2 for visibility. The data agree with the expected velocity given the typical relative permittivity of an FR4 printed-circuit board substrate (\sim 4.3).

Figure 2.10: Reconstructed position of 3 single p.e. laser spots on the MCP-PMT active area of 5×5 cm². The longitudinal position is reconstructed by the time-difference along the microstrip line with a resolution of ~3 mm. The transverse position is reconstructed by taking the weighted average of the waveform autocovariance at zero-lag between 3 adjacent striplines. With this method, the transverse resolution is sub-mm

³⁰⁶ pulse due to the additional resistive attenuation. There is a 20 dB pre-amp board on the ³⁰⁷ ACDC input so the unconditioned single p.e. MCP-PMT signals are typically between \sim 2-³⁰⁸ 5 mV.⁶ Also visible in the figure is an apparent synchronous line in many channels near the ³⁰⁹ beginning of the recording window. This is the time at which the PSEC4 is triggered.

The single p.e.position resolution is obtained by scanning the laser beam on the PM's active area both parallel and transverse to the microstrip direction. Results from a scan along the microstrip direction are shown in Figure 2.9. Four data points were taken at a spatial separation of 4.5 mm. The direct and reflected waveform time-difference is histogrammed for different points in Fig. 2.9a, which shows a resolution of \sim 35 ps. This is the inherent electronics timing resolution for the single p.e. pulses and the resolution error is most likely dominated by the time-base INL, which is left uncalibrated.

Figure 2.9 shows the time difference along the microstrip vs. the laser beam position, allowing the signal propagation velocity in Eqn. 2.6 along the microstrip to be calculated. The best fit v_{prop} is found to be 0.47 c.

The spatial resolution transverse to the microstrip lines can be pushed to sub-mm levels using charge centroiding between channels [12]. In this application, we conservatively use the strip pitch for this value, ~ 2 mm. Figure 2.10 shows the distinct separation and resolutions of 3 laser beam spots on the PM, demonstrating the principle of using the MCP-PMT as a multi-pixel photosensor.

325 Multi-photon

A similar test-stand setup is employed to measure the relative timing between single photons within the same laser pulse. In this setting, the iris is re-aligned with the laser beam axis, and a 10 mm focal length convex lens is put in the laser path. The MCP-PMT sits 30 cm behind the lens, which projects an elliptical laser beam spot over the MCP-PMT active area.

^{6.} Measurements with the LAPPD MCPs have demonstrated gains $\geq 10^7$, which give single p.e. signals ten-times as large into the same 50 Ω anode [43].

A neutral density filter is installed after the lens to attenuate to a ~few photons per pulse. Events are analyzed that have 2 recorded p.e.'s, in which the are clearly separated between channels above and below the MCP-PMT center-line. ACDC recorded waveforms from one of these events is shown in Figure 2.11a. Using waveform recording allows a range of algorithms to best extract the timing information. It has been shown that full template fitting or crosscorrelation provides the best resolution [12, 41, 44]. In this test, the waveforms are fitted using a Gaussian function covering the rising edge and the pulse peak.

The resultant relative timing between photons is shown in Figure 2.11b. A tail is seen in the distribution, which is likely caused by optical reflections in the test setup that are recorded late. The core resolution is shown to be 105 ps, which corresponds to a single p.e. PM resolution of 75 ps. Again, a full calibration of the ACDC timebases across all channels would certainly reduce the contribution from the electronics to this error.

From these measurements, we conclude that our 1- σ single p.e. time and space statistical errors are $(\sigma_t, \sigma_x, \sigma_y) = (75 \text{ ps}, 2 \text{ mm}, 3 \text{ mm}).$

Figure 2.11: (a) The waveform fitting technique in the double-photon setup. This shows strip 10 (top) and strip 21, which were independently hit within the same laser pulse. The pulses are fit using a Gaussian function, from roughly 10% of the pulse amplitude on the leading edge to the 2^{nd} sample point after the maximum pulse value. (b) The relative timing measurement between 2 photons on the PM. The underlying single p.e. electronics + MCP-PMT timing resolution for this measurement is 75 picoseconds.

CHAPTER 3 EXPERIMENTAL SETUP

In this chapter, we describe the experimental setup and beam-line simulations. The installation location and flux simulation of the Fermilab test beam are discussed in §3.1. Some of the OTPC operational configurations and related systematics are presented in §3.2. The OTPC trigger system is explained in §3.3.

350

344

345

3.1 MCenter Test Beam

The OTPC was installed ~ 3 m behind a 1.09 m thick steel absorber that terminated the MCenter secondary beam line at the Fermilab National Laboratory Test-Beam Facility [45]. The absorber acts doubly as a collimator with a 13° off-axis slit and an anterior-mounted copper target oriented at the same angle. This generates the tertiary beam utilized by the LArIAT experiment, to which we operated parasitically [46].

A side view of the installed OTPC is shown in Figure 3.1 where the upstream absorber 356 is out of the frame. The 5 OTPC PM modules are mounted facing inwards on the water 357 volume. Each of the PMs are connected to the system central cards over 2 CAT6 network 358 cables. The system cards interface to a remotely controlled linux PC on an adjacent rack 359 that also houses the beam trigger coincidence and discrimination logic. High voltage (HV) 360 is supplied to the detector from the counting room over ~ 200 m SHV cables; the electronics' 361 low voltage is supplied within the enclosure. The OTPC water volume is 2.1 radiation lengths 362 along the cylindrical axis. 363

The beam is delivered to the Meson Lab during the 4.2-second slow-spill at the the beginning of the ~ 60 second Fermilab Accelerator Complex 'super cycle'. The time structure is shown in Figure 3.2 as recorded during an acquisition run. During the OTPC test-beam runs, a secondary beam of positive pions was received on the MCenter target at momenta of 8, 16, or 32 GeV/c. Because of the OTPC location behind the secondary beam absorber,

Figure 3.1: The OTPC mounted in the MC7 enclosure hall where the beam height is 208 cm. The upstream steel absorber block is out of the frame to the right. Mounted facing inwards, the 5 PMs connect to the system DAQ that is mounted on the left. The DAQ system connects to a remotely controlled laptop on an adjacent rack, which also houses the beam trigger coincidence and discrimination logic. The yellow dipole magnets on the adjacent tertiary beam-line are visible in the background.

Figure 3.2: For a typical data acquisition, the number of events recorded to disk vs. the ACDC firmware timestamp from one of the front-end boards. The timestamp is registered with respect to the 40 MHz system clock. This acquisition was run for ~ 20 min, which included 20 test-beam spills. The DAQ can acquire a maximum of 40-50 events per spill (<12 Hz). Saved in a compressed 'ROOT' format, each event is ~ 70 kB.

the flux and particle ID is not well defined.

A G4beamline simulation was written to understand the particle flux behind the absorber [47]. The copper target, steel block, and the OTPC water volume were included in the simulation. Two-million events were run, each starting with a 14 m long- π^+ beam to reproduce muons from pion decay-in-flight¹. The results from the 16 GeV/c secondary momentum simulation are shown in Table 3.1, which represents particles whose trajectories would pass the OTPC beam trigger described in §3.3. Unsurprisingly, for a secondary beam of 16 GeV/c we expect primarily muons over a broad momenta range of:

$$\sim [(16 - dE/dx_{absorber})/2), 16 - dE/dx_{absorber}] \text{ GeV/c.}$$

A variety of other particles, including multi-GeV pions, protons, with sub-GeV photons and e^{\pm} are expected. At these momenta, pions will be indistinguishable by timing from muons over the OTPC length. Unless converting in the thin plastic scintillator that makes

^{1.} Supplemental details regarding the beamline simulation are included in Appendix B
Table 3.1: Simulated particle ID, count, and expectation value of total momentum, $\langle P_{tot} \rangle$, at the OTPC location with a 16 GeV/c π^+ secondary beam. Particles with P_{tot} greater than 10 MeV/c were counted. (POT= π^+ on target)

PID	$N/(10^6 POT)$	$< P_{tot} >$	Note:
μ^{\pm}	1200	10 GeV/c	broadband 7-14 GeV/c
π^{\pm}	150	8 GeV/c	peaked at 14GeV/c (16GeV/c - absorber
			dE/dx), otherwise scattered over 1-14 GeV/c
e^{\pm}	10	$<1 { m GeV/c}$	
γ	60	$<1 { m GeV/c}$	
p	<10	<4 GeV/c	

³⁸¹ up the front coincidence trigger, the photons are not likely to pass the beam trigger. The ³⁸² opposite is true for showering e^{\pm} , which will may not toggle the back coincidence trigger. A ³⁸³ limited TOF measurement ($\sigma \sim 100 \ ps$ over 1 meter, discussed in §4.2) is possible with the ³⁸⁴ trigger setup, which can potentially identify protons of several GeV/c or less.

³⁸⁵ During data taking, the MCenter count rate per test-beam spill varied between 4×10^4 ³⁸⁶ and 1×10^5 . Table 3.1 presents the expected the number of triggered events in a range of ³⁸⁷ 20-50 test-beam spills.

Another aspect of the beam simulation was to provide an expectation on the number of simultaneous tracks within the OTPC. Assuming an RF bunch occupancy of either 0 or 1 particles, the track multiplicity expectation is shown in Figure 3.3. For each particle trajectory that passed the OTPC geometrical trigger cut, any other particle with momentum above 1 MeV/c that traverses the detector within the same simulated event was counted. We expect fewer than 1% of the events to have more than one track per trigger.

394

3.2 Operational Configuration and Timing Systematics

The MCP-PMT transit time from the photo-electric conversion at the photocathode to the signal generated on the anode varies with respect to the applied HV. Systematic timing differences between PMs will arise once the optimal HV conditions for each are set. This is particularly influenced by varying electron transit times in the MCP-PMT photocathode-to-

Figure 3.3: Simulated track multiplicity in the OTPC fiducial volume per triggered event. For both 8 and 16 GeV/c secondary π^+ beam, the number of tracks per pion-on-target was simulated. This was calculated by taking an event that passes the trigger cut and adding to it any additional tracks from that same event that passed through the OTPC.

top-MCP and bottom-MCP-to-anode gaps, in which electron(s) are accelerated in a uniform
potential of 100's of volts from an kinetic energy of a few eV's over a distance of a several mm.
In the Planacon MCP-PMTs used in this experiment, the photocathode gap ('K-gap') separation is 4.3 mm and the anode gap ('A-gap') is 3.0 mm [48].

A photo-electron produced in the photocathode is accelerated in a ~straight path over a uniform K-gap potential. With this approximation, we ignore the photocathode emittance that contributes some angular dependence to the initial path condition. In the straight path case, the equation of motion of the non-relativistic photo-electron is given by

$$m_e \ddot{z} = q_e \vec{E} \cdot \hat{z} = q_e \frac{\Delta V}{d} \tag{3.1}$$

where m_e and q_e are the electron mass and charge, respectively. The K-gap electric potential and separation distance are represented by ΔV and d. Considering the initial photo-electron kinetic energy small enough to be negligible (KE_i/KE_f ~0.01), the transit time of the K-gap

Table 3.2: OTPC Photodetector Module (PM) operational voltages and corresponding MCP-PMT gap transit times. The photocathode gap (K-gap) and anode gap (A-gap) voltages are set using an external resistor divider circuit. The transit times for these gaps, T_{Kgap} and T_{Agap} , are calculated from Eqns. 3.2 and 3.3

PM No.	Total HV $[V]$	K-gap HV $[V]$	A-gap HV $[V]$	T_{Kgap} [ps]	$T_{Agap} [ps]$
0	2280	$240{\pm}10$	$350{\pm}10$	940 ± 20	490 ± 10
1	2910	395 ± 20	410 ± 20	$730 {\pm} 20$	$450 {\pm} 10$
2	2155	$300{\pm}10$	$340{\pm}10$	840 ± 20	$500 {\pm} 10$
3	2190	$310{\pm}10$	$340{\pm}10$	820 ± 20	$500{\pm}10$
4	2060	$290{\pm}10$	320 ± 10	850 ± 20	$510{\pm}10$

410 can be expressed as

$$T = d \sqrt{\frac{2 m_e}{q_e \Delta V}} \tag{3.2}$$

An expression for the transit-time of the A-gap is not as straight-forward due to the physical nature of the electron cloud showering from the bottom MCP. An expression for the timeof-arrival, T_{max} , of an accelerated cloud of electrons across the A-gap arriving at the anode has been solved using a ballistic (i.e. no interactions between electrons in the cloud) model including non-zero initial radial and angular distributions [49]:

$$T_{max} = d \, \frac{\sqrt{2 \, E_o \, m_e}}{q_e \, \Delta V} \left(\sqrt{1 + \frac{q_e \, \Delta V}{E_o}} - 1 \right) \tag{3.3}$$

In this expression, d is the A-gap separation and E_o is the average initial electron kinetic energy given by $\sim 3 \text{ eV}$, as specified by Ref. [49].

⁴¹⁸ Using Eqns. 3.2 and 3.3, we can find the relative transit time differences between the ⁴¹⁹ PMs as shown in Table 3.2. The systematic timing offsets between PMs are corrected by ⁴²⁰ subtracting from the ACDC digitized data the sum of transit times from both gaps. An ⁴²¹ additional timing correction is applied by nulling relative trace lengths for different channels ⁴²² on the ACDC and pre-amplifier board.

3.3 The Trigger

The OTPC trigger is created using 2 systems. The first is the beam trigger, which provides 424 a coincidence signal of a thru-going particle. The second, level-0 (L0) trigger is done locally 425 on each PM, which self-triggers on the detected Cherenkov photons on that particular MCP-426 PMT. This 2-level system is required when using the PSEC4 chip due to its relatively short 427 analog memory. When running the PSEC4 at a sampling rate of 10.24 GSPS, the waveforms 428 on the PSEC4 capacitor array are over-written in 25 ns intervals. The beam coincidence 429 trigger decision requires a few hundred nanoseconds due to cable and electronic delays, 430 which necessitates the fast L0 trigger to save these signals. 431

432

423

3.3.1 Beam trigger system

The beam trigger is a set of scintillator and Cherenkov detectors external to the OTPC water volume, as shown in Figure 3.4. A pair of $5 \times 5 in^2$ plastic scintillators are mounted fore (S_1) and aft (S_2) that provide good coverage over the OTPC cross-sectional area. A $1 \times 1 in^2$ active area, single-pixel MCP-PMT is mounted on the front cap of the OTPC and denoted as R_1 . In the central region of R_1 's active area is a small cylindrical (1 cm diameter) fused-silica radiator². R_2 is a $2 \times 2 in^2$ MCP-PMT that is coupled to a matching 2 in square radiator³. It is mounted on the rear of the detector as also shown in Figure 2.1.

An additional set of PSEC4-based electronics is implemented on the OTPC to monitor the analog signals of S_1 and S_1 , as well as to threshold discriminate R_1 . This is done with a 6-channel PSEC4 evaluation card, which also serves to fan-out the R_1 trigger signal to the PMs as an unbiased L0 trigger signal. R_2 is read out and digitized in the same manner as the PMs, allowing spatial and time-tagging of the out-going particle. For each

^{2.} This was done in an attempt to use differences in pulse-height to distinguish particles that radiate in the MCP-PMT front window from those that traversed through the centrally-located cylindrical fused-silica radiator

^{3.} R_2 is a borosilicate front-window PHOTONIS XP85022 MCP-PMT, which is same device used in the PMs. R_1 is a PHOTONIS XP85013 MCP-PMT, which has a different anode structure that is comprised of 64 pins. The R_1 signal is made by summing the central 32 pixels.

Figure 3.4: Diagram of the external trigger on the beam. The beam trigger coincidence can be made between four sub-detectors: the front and back scintillators+PMTs (S_1 and S_2), and the front and back fused-silica Cherenkov radiators+MCP-PMTs (R_F and R_B). An additional debug/trigger detector is generated by a 1" PMT mounted on the last OTPC port that can observe Cherenkov light in the water volume (*Light-PMT*).

event, the digitized signal from R_1 is recorded with those of R_2 , allowing for a time-of-flight measurement as well.

The beam trigger signal is made with standard NIM rack electronics. S_1 , S_2 , and R_1 are discriminated and and fed to a coincidence unit. Two configurations were used during data runs: (1) $S_1+S_2+R_1$, and (2) S_1+R_1 . Trigger configuration (1) is the default thru-going particle trigger. Configuration (2) allowed the recording of particles that may scatter, stop, or shower out within the water volume. Both digital trigger signals are sent to the OTPC DAQ.

3.3.2 Fast level-0 trigger

453

CHAPTER 4 DATASETS

The OTPC was installed on the MCenter test-beam for several months in the spring of 2015. Data was taken at secondary beam momenta of 8, 16, and 32 GeV/c during that time. The dataset properties presented here are from data runs triggering on thru-going particles (trigger configuration 1 as described in §3.3.1).

Section 4.1 presents the OTPC detection efficiency compared to simulation and channelby-channel occupancies. Particle information from the beam trigger is shown in §4.2. Methods of waveform feature extraction are described in §4.3.

463

4.1 Efficiency, Occupancies, and Gain

The data presented are taken from 16 GeV/c secondary beam runs in which the optical water quality was at or better than the 6 hour curve in Figure 2.4.

466

4.1.1 Forming an event

⁴⁶⁷ An OTPC event is recorded using 180 channels 10.24 GSPS data in a time window of 25 ns. ⁴⁶⁸ The first 150 channels are from the OTPC photodetector modules (PM) and the remaining ⁴⁶⁹ 30 channels comprise the trigger information of R_1 and R_2 , which are described in §3.3. The ⁴⁷⁰ following procedures are run on these data before analyzing an event:

471 1. A pedestal calibration is performed for each sample cell in each PSEC4 channel as
472 described in Ref [38]¹.

473 2. The firmware time-stamps are checked on the front-end ACDC boards. If the time474 stamps are not synced, the event is discarded.

454

455

^{1.} Also described in the Appendix: A.4

PM No.	Min. pulse (ADC counts)	Int. charge (pC)
0	50	0.30
1	35	0.22
2	55	0.32
3	50	0.30
4	50	0.30

Table 4.1: Signal selection thresholds for channels within each PM.

3. Channel 179 is the digitized signal from R_1 and is used as a zero-time (t_0) reference. The data on all channels are shifted such that t_0 at sample cell 90. With this shift, the hits from the Cherenkov photons are now located in the first one-third of the 256 sample PSEC4 buffer.

480

4. A reference baseline level, created using median value of sample cells 200-255, is subtracted from each channel.

5. A time-base is constructed from the sample-steps using the coarse calibration shown
in Table 2.2 using 97 ps time-steps per sample. The wraparound region is interpolated
at the same 97 ps interval in order to have an evenly spaced time-base

- 6. The particle output position is extracted by fitting the R_2 data in channels 150-179, as described in §4.2. The data are then reduced to the 150 channels of the PMs.Tthe event is discarded if the trigger is poorly fit.
- ⁴⁸⁷ 7. An event window is defined over the first 110 sample cells. The event is shrunk down to these data points, which encompasses a time window of ~ 11 ns.
- $\begin{array}{l} \text{8. The data are digitally low-pass filtered using a 4}^{th} \text{ order butter filter at a -3 dB point} \\ \text{of 800 MHz.} \end{array}$

⁴⁹¹ 9. Channels below the signal thresholds defined in Table 4.1 are cut.

The signal threshold criteria are 2-fold. The first is a minimum pulse height given by the peak digitized PSEC4 value in the event time window. Second, there is a minimum

Figure 4.1: Fraction of events in which number of OTPC channels is above a defined single p.e. threshold. The threshold is a combination of minimum pulse height, integrated charge over a 11 ns waveform region.

requirement for integrated charge within the event window. The combination of the two
aid in removing channels that are primarily cross-talk. A cross-talk signal may have a large
amplitude, but a minimal deposited charge.

497

4.1.2 Photo-detection efficiency

The number of channels that passed the signal thresholds over a dataset of 1600 events is shown in Figure 4.1. Roughly 50% of the events have 80 or more channels above threshold per event. This is not a direct indication of the number of individual photons detected per event, but should be a decent proxy. Effects not included are over estimation due to charge-sharing between channels and under estimation from channels that may have 2 or more photon hits.

A comparison between data and the expectation from simulation shows a 20-30% detection ineffeciency compared to the Monte Carlo.

Figure 4.2: Per-event single p.e. OTPC channel occupancy.

506

4.1.3 Occupancy and Gain

⁵⁰⁷ Using the same dataset, we measure the occupancy and gain per OTPC channel. The ⁵⁰⁸ number of signals above threshold per-event per-channel is shown in Figure 4.2. PMs 0 and ⁵⁰⁹ 2-4 are the newer MCP-PMTs and PM 1 is an older model that shows a relatively less overall ⁵¹⁰ occupancy. A number of poorly coupled channels are visible in Fig. 4.2, which are cut from ⁵¹¹ the dataset.

The gain per channel is shown in Figure 4.3, which is the multiplicative gain of the MCP-PMT and the 20 dB pre-amplifier board. This is measured by taking the median integrated charge for signals above threshold over the dataset. Error bars are taken to be the RMS of the integrated charge distribution per channel. MCP-PMT gains of about 10⁶ are found for PMs 0 and 2-4, which is measured to be about twice the gain of PM 1. The gain on each

Figure 4.3: OTPC channel gain: MCP-PMT \times electronics pre-amp gain.

⁵¹⁷ channel is used to calibrate the number of detected photo-electrons per event.

518

4.2 Trigger Information

⁵¹⁹ When triggering on thru-going particles, it is possible to reconstruct the position in which ⁵²⁰ they leave the OTPC using the R_2 detector in the beam trigger (§3.3.1). The particle ⁵²¹ output position is extracted by fitting the R_2 signal on a 30 channel microstrip anode. A ⁵²² more detailed explanation of fitting the trigger signals is outlined in Appendix ??. Figure 4.4 ⁵²³ shows the reconstructed particle positions at the output of the OTPC for 8 and 16 GeV/c ⁵²⁴ datasets.

⁵²⁵ A limited time-of-flight (TOF) measurement is also possible using the beam trigger. ⁵²⁶ The relative timing between R_1 and R_2 for the 16 GeV/c dataset is shown in Figure 4.5. A ⁵²⁷ resolution of 110 ps over a distance 0.9 m is measured for muons, pions, and possibly electrons ⁵²⁸ passing through the detector. The front trigger detector, R_1 , is the primary limitation of ⁵²⁹ the TOF measurement due to the low-fidelity signal when wiring together the 32 anode-pads ⁵³⁰ into a single pixel.

Figure 4.4: Reconstructed output particle position through the rear MCP-PMT+Cherenkov radiator for an (a) 8 GeV dataset and a (b) 16 GeV dataset. This MCP-PMT is part of the beam trigger system and is denoted as R_2 in Fig. 3.4 in the coordinate system defined in Fig. 2.1. The data is histogrammed in $2 \times 2 \text{ mm}^2$ bins, where the Y direction is taken from the time difference along the anode transmission line and the X position is reconstructed using charge centroiding between microstrips.

Figure 4.5: Measured time-of-flight using the beam trigger over 1k events in a 16 GeV/c dataset. The core resolution is 110 ps from the normal fit. Accidentals, or perhaps a few candidate protons (p < 2 GeV/c), are measured ~1.5-2 ns slower.

Figure 4.6: OTPC microstrip channel hit by two photons with 2 double-gaussian fits

4.3 Feature Extraction

531

Appendices

APPENDIX A

533

534

WAVEFORM SAMPLING & THE PSEC4 ASIC

The detection of discrete photons and high-energy particles is the basis of a wide range of 535 commercial and scientific applications. In many of these applications, the relative arrival 536 time of an incident photon or particle is best measured by extracting features from the full 537 waveform at the detector output [44, 50]. Additional benefits of front-end waveform sampling 538 include the detection of pile-up events and the ability to filter noise or poorly formed pulses. 539 For recording 'snapshots' of transient waveforms, switched capacitor array (SCA) analog 540 memories can be used to sample a limited time-window at a relatively high rate, but with a 541 latency-cost of a slower readout speed [51, 52]. These devices are well suited for triggered-542 event applications, as in many high energy physics experiments, in which some dead-time 543 on each channel is acceptable. With modern CMOS integrated circuit design, these SCA 544 sampling chips can be compact, low power, and have a relatively low cost per channel [52]. 545 Over the last decade, sampling rates in SCA waveform sampling ASICs have been pushed 546 to several GSa/s with analog bandwidths of several hundred MHz up to ~ 1 GHz [39]. As 547 a scalable front-end readout option coupled with the advantages of waveform sampling. 548 these ASICs have been used in a wide range of experiments; such as high-energy physics 549 colliders [39], gamma-ray astronomy [53, 54], high-energy neutrino detection [55, 56], and 550 rare decay searches [57, 58]. 551

552

A.1 Motivation for a new chip design

⁵⁵³ A natural extension to the existing waveform sampling ASICs is to push design parameters ⁵⁵⁴ that are inherently fabrication-technology limited. Parameters such as sampling rate and ⁵⁵⁵ analog bandwidth are of particular interest considering the fast risetimes ($\tau_r \sim 60 - 500$ ps) ⁵⁵⁶ and pulse widths (FWHM ~ 200 ps - 1 ns) of commercially available and novel technologies ⁵⁵⁷ of micro-channel plate (MCP) and silicon photomultipliers [43, 59, 60]. These and other fast ⁵⁵⁸ photo-optical or RF devices require electronics matched to the speed of the signals.

The timing resolution of discrete waveform sampling is intuitively dependent on three primary factors as described by Ritt¹ [41]:

$$\sigma_t \propto \frac{\tau_r}{(SNR)\sqrt{N_{samples}}} = \frac{1}{(SNR)\sqrt{3f_{sample}f_{3dB}}}$$
(A.1)

where SNR is the signal-to-noise ratio of the pulse, τ_r is the 10-90% rise-time of the pulse, 561 and $N_{samples}$ is the number of independent samples on the rising edge within time τ_r . The 562 sampling frequency and half-power bandwith are given by f_{sample} and f_{3dB} , respectively. 563 The motivation for oversampling above the Nyquist limit is that errors due to uncorrelated 564 noise, caused both by random time jitter and charge fluctuations, are reduced by increasing 565 the rising-edge sample size. Accordingly, in order to preserve the timing properties of analog 566 signals from a fast detector, the waveform recording electronics should 1) be low-noise, 2) 567 match the signal bandwidth, and 3) have a fast sampling rate relative to the signal rise-time. 568

569

A.2 Introduction to PSEC4

We describe the design and performance of the PicoSECond-4 (PSEC4), a ≥ 10 Gigasample/second [GSa/s] waveform sampling and digitizing Application Specific Integrated Circuit (ASIC) fabricated in the IBM-8RF 0.13 μ m complementary metal-oxide-semiconductor (CMOS) technology. This compact 'oscilloscope-on-a-chip' is designed for the recording of radio-frequency (RF) transient waveforms with signal bandwidths between 100 MHz and 1.5 GHz.

576

A.2.1 Towards $0.13 \ \mu m \ CMOS$

The well-known advantages of reduced transistor feature size include higher clock speeds, greater circuit density, lower parasitic capacitances, and lower power dissipation per cir-

^{1.} Assuming Shannon-Nyquist is fulfilled

Figure A.1: The PSEC4 layout, as captured in the computer-aided design software. The layout is symmetric about the horizontal center-line, with 3 channels above and below. Along the center-line is the PSEC4 sampling and timing generator circuit. The chip dimensions are $4 \times 4.2 \text{ mm}^2$. The 3 top, thick metal layers are not shown to allow a good view of the middle and lower metal layers, where the bulk of the circuitry is routed.

cuit [61]. The sampling rate and analog bandwidth of waveform sampling ASICs, which depend on clock speeds, parasitic capacitances, and interconnect lengths, are directly enhanced by moving to a smaller CMOS technology. Designing in a smaller technology also allows clocking of an on-chip analog-to-digital converter (ADC) at a faster rate, reducing the chip dead-time.

⁵⁸⁴ With the advantages of reduced transistor feature sizes also comes increasingly challeng-⁵⁸⁵ ing analog design issues. One issue is the increase of leakage current. Leakage is enhanced ⁵⁸⁶ by decreased source-drain channel lengths, causing subthreshold leakage ($V_{GS} < V_{TH}$), and ⁵⁸⁷ decreased gate-oxide thickness, which promotes gate-oxide tunneling [62]. Effects of leakage ⁵⁸⁸ include increased quiescent power dissipation and potential non-linear effects when storing ⁵⁸⁹ analog voltages.

Another design issue of deeper sub-micron technologies is the reduced dynamic range [62]. The available voltage range is given by $(V_{DD}-V_{TH})$, where V_{DD} is the supply voltage and V_{TH} is the threshold, or 'turn-on', voltage for a given transistor. For technologies above 0.1 μ m, the $(V_{DD}-V_{TH})$ range is decreased with downscaled feature sizes to reduce highfield effects in the gate-oxide [62]. In the 0.13 μ m CMOS process, the supply voltage V_{DD} is 1.2 V and the values of V_{TH} range from ~0.4 V for a minimum-size transistor (gate length 120 nm) to 0.2 V for a large-size transistor (5 μ m) [63, 64].

The potential of waveform sampling design in 0.13 μ m CMOS was shown with two 597 previous ASICs. A waveform sampling prototype, PSEC3, achieved a sampling rate of 598 15 GSa/s and showed the possibility of analog bandwidths above 1 GHz [65]. Leakage 599 and dynamic range studies were also performed with this chip. In a separate 0.13 μ m 600 ASIC, fabricated as a test-structure chip called CHAMP, a 25 GSa/s sampling rate rate was 601 achieved using low V_{TH} transistors [66]. The performance and limitations of these chips led 602 to the optimized design of the PSEC4 waveform digitizing ASIC. The fabricated PSEC4 die 603 is shown in Figre A.1. 604

605

In this chapter, we describe the PSEC4 architecture (§A.3), and experimental perfor-

607

A.3 PSEC4 Architecture

An overview of the PSEC4 architecture and functionality is shown in Figure A.2. A PSEC4 channel is a linear array of 256 sample points and a threshold-level trigger discriminator. Each sample point in the array is made from a switched capacitor sampling cell and an integrated ADC circuit as shown in Figure A.3.

To operate the chip, a field-programmable gate array (FPGA) is used to provide timing control, clock generation, readout addressing, data management, and general configurations to the ASIC. Several analog voltage controls are also required for operation, and are provided by commercial digital-to-analog converter (DAC) chips.

Further details of the chip architecture, including timing generation (§A.3.1) sampling and triggering (§A.3.2), analog-to-digital conversion (§A.3.3), and data readout (§A.3.4), are outlined in the following sections.

619

A.3.1 Timing Generation

The sampling signals are generated with a 256-stage Voltage-Controlled Delay Line (VCDL), in which the individual stage time delay is adjustable by two complementary voltage controls. There is a single VCDL that distributes the timing signals to the entire chip. Each stage in the VCDL is an RC delay element made from a CMOS current-starved inverter. The inverse of the time delay between stages sets the sampling rate. Rates of up to 17.5 GSa/s are possible with PSEC4 as shown in Figure A.4. When operating the VCDL without feedback, the control voltage is explicitly set and the sampling rate is approximately given by

$$18 - 0.3 e^{6 \cdot V_{control}} [GSa/s].$$
 (A.2)

Figure A.2: A block diagram of PSEC4 functionality. The RF-input signal is AC coupled and terminated in 50 Ω off-chip. The digital signals (listed on right) are interfaced with an FPGA for PSEC4 control. A 40 MHz write clock is fed to the chip and up-converted to ~10 GSa/s with a 256-stage voltage-controlled delay line (VCDL). (For clarity, only 8 of the 256 cells and 1 of the 6 channels are illustrated). A 'write strobe' signal is sent from each stage of the VCDL to the corresponding sampling cell in each channel. The write strobe passes the VCDL-generated sampling rate to the sample-and-hold switches of each SCA cell. Each cell is made from a switched capacitor sampling cell and integrated ADC counter, as shown in Figure A.3. The trigger signal ultimately comes from the FPGA, in which sampling on every channel is halted and all analog samples are digitized. The on-chip ramp-compare ADC is run with a global analog ramp generator and 1 GHz clock that are distributed to each cell. Once digitized, the addressed data are serially sent off-chip on a 12-bit bus clocked at up to 80 MHz.

Figure A.3: Simplified schematic of the 'vertically integrated' PSEC4 cell structure. The sampling cell input, V_{in} , is tied to the on-chip 50 Ω input microstrip line. Transistors T1 and T2 form a dual-CMOS write switch that facilitates the sample-and-hold of V_{in} on C_{sample} , a 20 fF capacitance referenced to V_{ped} . The switch is toggled by the VCDL write strobe while sampling (Figure A.2) or an ASIC-global trigger signal when an event is to be digitized. When the ADC is initiated, a global 0.0-1.2 V analog voltage ramp is sent to all comparators, which digitizes the voltage on C_{sample} using a fast ADC clock and 12-bit counter. To send the digital data off-chip, the register is addressed using *Read_enable*.

Figure A.4: Sampling rate as a function of VCDL voltage control. Good agreement is shown between post layout simulation and actual values. Rates up to 17.5 GSa/s are achieved with the free-running PSEC4 VCDL.

Typically, the servo-locking will be enabled and the VCDL is run as a delay-locked loop (DLL). In this case, the sampling rate is automatically set by the input write clock frequency. The stability of the sampling rate is negatively correlated with the slope magnitude as the VCDL becomes increasingly sensitive to noise. The slowest stable sampling rate is ~ 4 GSa/s. A 'write strobe' signal is sent from each stage of the VCDL to the corresponding sampling cell in each channel. The write strobe passes the VCDL-generated sampling rate to the sample-and-hold switch of the cell as shown in Figure A.3. To allow the sample cell enough time to fully charge or discharge when sampling, the write strobe is extended to a fixed duration of $8\times$ the individual VCDL delay stage. In sampling mode, a 'sampling block' made of 8 adjacent SCA sampling cells continuously tracks the input signal.

To servo-control the VCDL at a specified sampling rate and to compensate for temperature effects and power supply variations, the VCDL can be delay-locked on chip. The VCDL forms a delay-locked loop (DLL) when this servo-controlled feedback is enabled. The servocontrol circuit is made of a dual phase comparator and charge pump circuit to lock both the rising and falling edges of the write clock at a fixed one-cycle latency [67]. A loop-filter capacitor is installed externally to tune the DLL stability.

⁶⁴³ With this DLL architecture, a write clock with frequency f_{in} is provided to the chip, ⁶⁴⁴ and the sampling is started automatically after a locking time of several seconds. The ⁶⁴⁵ nominal sampling rate in GSa/s is set by $0.256 \cdot f_{in}$ [MHz], and the sampling buffer depth in ⁶⁴⁶ nanoseconds is given by $10^3/f_{in}$ [MHz⁻¹]. A limitation of the PSEC4 design is the relatively ⁶⁴⁷ small recording depth at high sampling rates due to the buffer size of 256 samples.

648

A.3.2 Sampling and Triggering

A single-ended, 256-cell SCA was designed and implemented on each channel of PSEC4. 649 Each sampling cell circuit is made from a dual CMOS write switch and a metal-insulator-650 metal sampling capacitor as shown in Figure A.3. With layout parasitics, this capacitance 651 is effectively 20 fF. During sampling, the write switch is toggled by the write strobe from 652 the VCDL. To record an event, an external trigger, typically from an FPGA, overrides the 653 sampling and opens all write switches, holding the analog voltages on the capacitor for the 654 ADC duration ($\leq 4 \mu s$). Triggering interrupts the sampling on every channel, and is held until 655 the selected data are digitized and read out. When triggered, the sampling is asynchronously 656 halted. This corrupts the voltage on the 7 sample cells that were in the process of sampling, 657

reducing the effective number of PSEC4 samples to 249.

The PSEC4 has the capability to output a threshold-level trigger bit on each channel. The internal trigger is made from a fast comparator, which is referenced to an external threshold level, and digital logic to latch and reset the trigger circuit. To form a PSEC4 trigger, the self-trigger bits are sent to the FPGA, which returns a global trigger signal back to the chip. In the internal trigger mode, the trigger round-trip time is 15-20 ns (depending on FPGA algorithm), which allows for the recording of a waveform before it is overwritten at 10 GSa/s.

666

A.3.3 Analog-to-Digital Conversion

Digital conversion of the sampled waveforms is done on-chip with a single ramp-compare ADC that is parallelized over the entire ASIC². Each sample cell has a dedicated comparator and 12 bit counter as shown in Figure A.3. In this architecture, the comparison between each sampled voltage (V_{sample}) and a global ramping voltage (V_{ramp}), controls the clock enable of a 12-bit counter. When $V_{ramp} > V_{sample}$, the counter clocking is disabled, and the 12-bit word, which has been encoded by the ADC clock frequency and the ramp duration below V_{sample} , is latched and ready for readout.

Embedded in each channel is a 5-stage ring oscillator that generates a fast digital ADC clock, adjustable between 200 MHz and 1.4 GHz. The ADC conversion time, power consumption, and resolution may be configured by adjusting the ramp slope or by tuning the ring oscillator frequency.

678

A.3.4 Readout

The serial data readout of the latched counter bits is performed using a shift register 'token' architecture, in which a *read_enable* pulse is passed sequentually along the ADC counter array. To reduce the chip readout latency, a limited selection of the 1536 counters in PSEC4

^{2.} An overview of this ADC architecture can be found in reference [68].

can be read out. Readout addressing is done by selecting the channel number and a block of 682 64 cells. While not completely random access, this scheme permits a considerable reduction 684 in dead time. At a maximum rate of 80 MHz, the readout time is 0.8 μ s per 64-cell block.

The readout latency is typically the largest contributor to the dead-time of the chip. The ADC conversion time also adds up to 4 μ s of latency per triggered event. These two factors limit the sustained trigger rate to ~200 kHz/channel or ~50 kHz/chip.

688

689

A.4 Calibration

A.4.1 Linearity and Dynamic Range

⁶⁹⁰ The signal voltage range is limited by the 1.2 V core voltage of the 0.13 μ m CMOS pro-⁶⁹¹ cess [63]. To enable the recording of signals with pedestal levels that exceed this range, the ⁶⁹² input is AC coupled and a DC offset is added to the 50 Ω termination. This is shown in the ⁶⁹³ Figure A.2 block diagram, in which the DC offset is designated by *V_ped*. The offset level is ⁶⁹⁴ tuned to match the input signal voltage range to that of PSEC4.

The PSEC4-channel response to a linear pedestal scan is shown in Figure A.5. This is the average DC response over all 256 cells in a channel. A signal voltage range of 1 V is shown, as input signals between 100 mV and 1.1 V are fully coded with 12 bits. An integral non-linearity (INL) of better than 0.15% is shown for most of that range. The non-linearity and limited DC signal range near the voltage rails are due to transistor threshold issues in the comparator circuit.

The DNL of this response, shown by the linear fit residuals in Figure A.5, can be corrected by creating an ADC count-to-voltage look-up-table (LUT) that maps the input voltage to the PSEC4 output code. The raw PSEC4 data is converted to voltage and 'linearized' with a channel-averaged LUT.

Further linearity calibrations can be implemented to correct for cell-to-cell gain variations.
A display of raw linearity scans over cells in a single channel is shown in Figure A.6. After

Figure A.5: DC response of the device running in 12 bit mode. The data are an average response of all 256 cells from a single channel. The upper plot shows raw data (red points) and a linear fit over the the same dynamic range (dotted black line, slope of 4 counts/mV). The fit residuals are shown in the lower plot.

Figure A.6: (a) Raw DC scans for all 256 PSEC4 cells on a single channel. (b) RMS spread in ADC counts scanned over input voltage on a PSEC4 channel. A mid-range pedestal subtraction on each cell reduces the RMS/mean spread to $\sim 1\%$ over an 0.8 V range

⁷⁰⁷ a cell pedestal subtraction, the RMS cell-to-cell gain dispersion is $\sim 1\%$ over an 0.8 V range. ⁷⁰⁸ Over this range, a single count-to-voltage LUT per channel may be sufficient. To effectively ⁷⁰⁹ use the entire PSEC4 DC dynamic range, a count-to-voltage conversion LUT should be ⁷¹⁰ implemented for each individual cell.

Figure A.7: Ring oscillator clock stability over temperature. This clock is stabilized with a servo-control algorithm in the FPGA that adjusts the DAC oscillator voltage controls. With this feedback, the ring oscillator frequency is held within 0.1% of the nominal 1.059 GHz over the tested temperature range.

Figure A.8: (a) Average DC response of a single PSEC4 channel over a temperature range of 0° C to 45° C. (b) The extracted DC transfer gains as a function of temperature for all channels.

⁷¹¹ Temperature Dependance

The ring oscillator ADC clock is the most temperature sensitive circuit and is servo-controlled using the FPGA to better than 0.1% over a wide temperature range as shown in Figure A.7. The ADC clock frequency was measured using 50k events at each temperature. Other temperature sensitive circuitry, including the chip-global ramp generator, are not feedback 716 controlled.

The count-to-voltage transfer also shows temperature variation due to changes in the ADC ramp slope. The average DC transfer curves at different temperatures are shown in Figure A.8a. The count-per-voltage gain is extracted from a fit to the linear region of the DC transfer curve and is plotted in Figure A.8b. Since the ADC ramp is common to all channels, the average DC tranfer gains of all channels are observed to have the same temperature dependence. To mitigate this effect, a feedback loop that serves the ramp current source could be implemented.

724

A.4.2 Sampling Calibration

For precision waveform feature extraction, both the overall time-base of the VCDL and the cell-to-cell time step variations must be calibrated. With the rate-locking DLL, the overall PSEC4 sampling time base is stably servo-controlled at a default rate of 10.24 GSa/s. The time-base calibration of the individual 256 delay stages, which vary due to cell-to-cell transistor size mismatches in the VCDL, is the next task. Since this is a fixed-pattern variation, the time-base calibration is typically a one-time measurement.

The brute force 'zero-crossing' time-base calibration method is employed [40]. This technique counts the number of times a sine wave input crosses zero voltage at each sample cell. With enough statistics, the corrected time per cell is extracted from the number of zero-crossings (N_{zeros}) using

$$<\Delta t> = \frac{T_{input} < N_{zeros} >}{2 N_{events}}$$
 (A.3)

where T_{input} is the period of the input and N_{events} is the number of digitized sine waveforms. A typical PSEC4 time-base calibration uses 10^6 recorded events of 400 MHz sinusoids.

The variation of the time-base sampling steps is $\sim 13\%$ as shown in Figure A.9a. Due to a relatively large time step at the first cell, the average sampling rate over the remaining

Figure A.9: (a) A histogram of the extracted time-base calibration constants (Δt) from a single channel. These values are calculated using the zero-crossing technique and are used to correct the sampling time-base of the PSEC4 chip. (b) The differential (DNL) and integral non-linearity (INL) of the PSEC4 time-base. The extracted Δt 's are compared to an ideal linear time-base with equal time-steps per sample point. The large time-step at the first sample bin is caused by a fixed DLL latency when wrapping the sampling from the last cell to the first.

Figure A.10: A 10.24 GSa/s capture of a 400 MHz sine input is shown (black dots) after a channel-only linearity correction and time-base calibration. A fit (red dotted line) is applied to the data.

VCDL cells is ~ 10.4 GSa/s, slightly higher than the nominal rate. With the servo-locking DLL the INL is constrained to be zero at the last cell. A digitized 400 MHz sine wave is shown in Figure A.10 after applying the time-base calibration constants.

Figure A.11: Mean time-base step as measured over a temperature range -1°C to 46°C. The sampling rate is held constant over temperature with the on-chip DLL.

The non-linearity of the PSEC4 time-base is shown in Figure A.9b. Each bin in the plot is indicative of the time-base step between the binned cell and its preceding neighbor cell. The relatively large DNL in the first bin, which corresponds to the delay between the last (cell 256) and first sample cells, is caused by a fixed DLL latency when wrapping the sampling from the last cell to the first.

The mean sampling rate is shown in Figure A.11 to be uniform over temperature. This is an expected feature of the on-chip DLL. Fifty-thousand events were recorded at each temperature point and the zero crossing algorithm was run on each dataset. No temperature dependence is observed.

751

A.5 Performance

Measurements of the PSEC4 performance have been made with several chips on custom evaluation boards shown in Figure A.12. The sampling rate was fixed at a nominal rate of 10.24 GSa/s. Here we report on bench measurements of linearity (§A.4.1), analog leakage (§A.5.1), noise (§A.5.2), power (§A.5.3), frequency response (§A.5.4), sampling calibrations (§A.4.2), and waveform timing (§A.5.5). A summary table of the PSEC4 performance is shown in §??.

Figure A.12: The PSEC4 evaluation board. The board uses a Cyclone III Altera FPGA (EP3C25Q240) and a USB 2.0 PC interface. Custom firmware and acquisition software were developed for overall board control. The board uses +5 V power and draws <400 mA, either from a DC supply or the USB interface.

758

A.5.1 Sample Leakage

When triggered, the write switch on each cell is opened and the sampled voltage is held at high impedance on the 20 fF capacitor (Fig. A.3). Two charge leakage pathways are present: 1) sub-threshold conduction through the write switch formed by transistors T1 and T2; and 2) gate-oxide tunneling through the NFET at the comparator input. The observable leakage current is the sum of these two effects.

To measure the leakage current, a 300 ns wide, variable-level pulse was sent to a single 764 PSEC4 channel. Since the sampling window is 25 ns, each SCA cell sampled the tran-765 sient level. After triggering, the sampled transient voltage was repeatedly digitized at 1 ms 766 intervals and the change in voltage on the capacitor was recorded over a 10 ms storage-time. 767 The room temperature PSEC4 leakage current as a function of input voltage over the full 768 1 V dynamic range is shown in Figure A.13. A pedestal level of $V_{DD}/2 = 0.6$ V was set at the 769 input. The measured leakage is shown in the 2-D histogram. A large spread (RMS ~ 70 fA) 770 is seen at each voltage level. Results from a 0.13 μm CMOS spice simulation show that 771 the write-switch leakage is the dominant pathway. A small amount (≤ 100 fA) of NFET 772 gate-oxide tunneling is also consistent with the data. 773

Figure A.13: PSEC4 sample cell leakage measured at room temperature. The measured leakage is shown by the histogrammed data points. Results from a 0.13 μ m CMOS SPICE simulation are also included. The simulation shows the leakage current contributions from 1) sub-threshold conduction through the disengaged write switch; and 2) gate-oxide tunneling from the NFET in the input stage of the comparator.

In normal operation, the ADC is started immediately after a trigger is registered. In this case, the analog voltage hold time is limited to the ADC conversion time. Assuming a constant current, the leakage-induced voltage change is given by

$$\Delta V = \frac{I_{leakage} \,\Delta t}{C_{sample}} \tag{A.4}$$

where Δt is the ADC conversion time. With the maximum leakage current of ± 500 fA and a conversion time of 4 μ s, ΔV is $\pm 100 \ \mu$ V. This value is at least 5× lower than the electronics noise. In other cases, the analog voltage may be held for a period time in order to wait for a trigger decision. This configuration was used in the OTPC trigger and is dicussed in §??.

781 A.5.2 Noise

After fixed-pattern pedestal correction and event-by-event baseline subtraction, which removes low-frequency noise contributions, the PSEC4 electronic noise is measured to be $\sim 700 \ \mu V$ RMS on all channels as shown in Figure A.14a. The noise level is consistently sub-mV over a $\pm 20^{\circ}$ C temperature range around room temperature. Above $\sim 20^{\circ}$ C, the

Figure A.14: (a) A PSEC4 baseline readout showing the electronic noise. The data are recorded from single channel after offset correction. The RMS value of $\sim 700 \ \mu V$ is representative of the electronics noise on all channels. (b) Channel RMS noise measured over temperature.

electronics noise increases with temperature, which is consistent with the thermal noise expectation of $\sqrt{k_B T/C}$ (Figure A.14b). The noise figure is dominated by broadband thermal noise on the 20 fF sampling capacitor, which contributes 450 μ V (RMS 60 electrons) at 300 K. Other noise sources include the ADC ramp generator and comparator. The noise corresponds to roughly 3 least significant bits (LSBs), reducing the DC RMS dynamic range to 10.5 bits over the signal voltage range.

792

A.5.3 Power

The power consumption is dominated by the ADC, which simultaneously clocks 1536 ripple counters and several hundred large digital buffers at up to 1.4 GHz. The total power draw per chip as a function of ADC clock rate is shown in Figure A.15. To reduce the steady state power consumption and to separate the chip's digital processes from the analog sampling, the ADC is run only after a trigger is sent to the chip. Without a trigger, the quiescent power consumption is ~40 mW per chip, including the locked VCDL sampling at 10.24 GSa/s and the current biases of all the comparators.

Initiating the ADC with a clock rate of 1 GHz causes the power draw to increase from

Figure A.15: Total PSEC4 power as a function of the ADC clock rate. Clock rates between 200 MHz and 1.4 GHz can be selected based on the power budget and targeted ADC speed and resolution. When the ADC is not running, the quiescent (continuous sampling) power consumption is \sim 40 mW per chip.

⁸⁰¹ 40 mW to 300 mW within a few nanoseconds. To mitigate high-frequency power supply ⁸⁰² fluctuations when switching on the ADC, several 'large' (2 pF) decoupling capacitors were ⁸⁰³ placed on-chip near the ADC. These capacitors, in addition with the close-proximity eval-⁸⁰⁴ uation board decoupling capacitors (~0.1-10 μ F), prevent power supply transients from ⁸⁰⁵ impairing chip performance.

At the maximum PSEC4 sustained trigger rate of 50 kHz, in which the ADC is running 20% of the time, a maximum average power of 100 mW is drawn per chip.

808

A.5.4 Frequency Response

The target analog bandwidth for the PSEC4 design was ≥ 1 GHz. The bandwidth is limited by the parasitic input capacitance (C_{in}) , which drops the input impedance at high frequencies³ as

$$|Z_{in}| = \frac{R_{term}}{\sqrt{1 + \omega^2 R_{term} C_{in}}} \tag{A.5}$$

^{3.} This ignores negligible contributions to the impedance due to the sampling cell input coupling. The write switch on-resistance ($\leq 4 \text{ k}\Omega$ over the full dynamic range) and the 20 fF sampling capacitance introduce a pole at ≥ 2 GHz.

Figure A.16: (a) PSEC4 frequency response. The -3 dB analog bandwidth is 1.5 GHz. The positive resonance above 1 GHz is due to bondwire inductance of the signal wires in the chip package. Similar responses are shown for large and small sinusoidal inputs. (b) Channel-to-channel crosstalk as a function of frequency. Channel 3 was driven with a -2 dBm sinusoidal input. Adjacent channels see a maximum of -20 dB crosstalk at 1.1 GHz. The electronic noise floor is -50 dB for reference.

where R_{term} is an external 50 Ω termination resistor. Accordingly, the expected half-power bandwidth is given by:

$$f_{3dB} = \frac{1}{2\pi R_{term} C_{in}} \tag{A.6}$$

The extracted C_{in} from post-layout studies was ~2 pF, projecting a -3 dB bandwidth of 1.5 GHz which corresponds to the measured value shown in Figure A.16a. The chip package-to-die bondwire inductance gives a resonance in the response above 1 GHz that distorts signal content at these frequencies. An external filter may be added to flatten the response.

The error bars correspond to the measurement procedure, in which several thousand sine waves are recorded at each frequency and histogrammed. The histogram bins with the maximum values are at the high and low peaks of the PSEC4-digitized sine wave. These peaks are fitted with a Gaussian function, from which the mean sine wave amplitude and measurement error (σ from fits) is extracted The measured channel-to-channel crosstalk is -25 dB below 1 GHz for all channels as shown in Figure A.16b. For frequencies less then 700 MHz, this drops to better than -40 dB. The primary crosstalk mechanism is thought to be the mutual inductance between signal bondwires in the chip package. High frequency substrate coupling on the chip or crosstalk between input traces on the PSEC4 evaluation board may also contribute.

Figure A.17 shows the crosstalk correlations between channels at 500 and 1000 MHz 829 driving channel 3 with a -2 dBm sinusoid. In the 500 MHz case, the cross talk is relatively 830 small and the magnitude is consistent with sub-1% crosstalk. Comparatively large corre-831 lations are observed on all non-driven channels for the 1000 MHz situation. The largest 832 magnitude, $\sim 10\%$, is found on the closest proximity channel 2. These measurements were 833 performed with no inductive on-board pedestal isolation so the magnitudes are higher than 834 the previously reported crosstalk values. The crosstalk phase and amplitude can be inferred 835 from the correlation ellipses. 836

⁸³⁷ AC linearity

The PSEC4 response to sinusoidal signals of varying magnitude is shown in Figure A.18. The AC signals were calibrated using the DC transfer count-to-voltage LUT (Figure A.5). Saturation is observed for signals as low as 100 MHz ($\sim 9\%$ above V_{pp} of 500 mV) and this effect becomes constant for frequencies above 500 MHz ($\sim 15\%$ above V_{pp} of 500 mV).

This AC saturation effectively reduces the PSEC4 ADC dynamic range. With a DC calibration, it was shown that 10.5 bits effectively covered a 1 V range including electronics noise. At 100 MHz, the dynamic range drops to ~10.35 bits. For signals up to 1 GHz, the dynamic range is 10.3 bits. Additionally, an AC count-to-voltage conversion calibration LUT can be used for correct for this saturation.

Figure A.17: Crosstalk correlation ellipses. (a) Crosstalk correlations at 500 MHz with a -2 dBm sinusoidal driving channel 3. A small correlation is observed in Channel 2, but otherwise no correlations are present. The magnitude is consistent with sub-1% crosstalk. (b) Crosstalk correlations at 1 GHz with a -2 dBm sinusoidal driving channel 3.

Figure A.18: AC response of a single channel. The PSEC4 data were converted to voltage using the DC linearity LUT as shown in Fig. A.5. Saturation of the AC signals is observed for all frequencies, most clearly above 500 mV_{pp}

A.5.5 Waveform Timing

847

The effective timing resolution of a single measurement is calculated by waveform feature extraction after linearity and time-base calibration. A 0.5 V_{pp} , 1.25 ns FWHM Gaussian pulse was created using a 10 GSa/s arbitrary waveform generator. The output of the generator was sent to 2 channels of the ASIC using a broadband-RF 50/50 splitter. This pulse, as recorded by a channel of PSEC4, is shown in Figure A.19. A Gaussian functional fit is performed to the leading edge of the pulse. The pulse times from both channels are extracted from the fit and are subtracted on an event-by-event basis.

The timing resolution was measured by asynchronous pulse injection to two channels of 855 PSEC4. In this measurement, the two pulses were delayed relative to one-another and the 856 waveforms were captured uniformly across the 25 ns PSEC4 sampling buffer. Ten-thousand 857 events were recorded at each delay stage. The time difference resolution was extracted by the 858 waveform fitting procedure shown in Figure A.19, before and after applying the time-base 850 calibration to both channels. Figures A.20a and A.20b show the timing resolution results 860 for pulse separations in the PSEC4 buffer of 0 ns and 16 ns, respectively. For uncalibrated 861 data in which the pulse separation is non-zero, the bimodal timing distribution is due to the 862 fixed DLL-wraparound offset. 863

Figure A.19: An example PSEC4 digitized pulse (black dots) and waveform fit (red line) that was used for the timing resolution measurement. A 1.25 ns FWHM Gaussian pulse was split and injected into two channels of the chip. The waveform was captured at 10.24 GSa/s and is shown after applying the time-base calibration constants.

Figure A.20: Time resolution results before (black-dashed) and after (maroon-solid lines) applying timebase calibrations. Pulses were injected asynchronously into 2 channels of PSEC4. Data are shown for pulse separations of (a) ~ 0 ns, and (b) ~ 16 ns. The bimodal distribution in the pre-calibration data of (b) corresponds to the fixed DLL wraparound offset.

⁸⁶⁴ A PSEC4-calibrated timing resolution of 9 ps or better was measured over a 20 ns span of ⁸⁶⁵ pulse separation. The 1σ resolution was extracted by fitting the calibrated timing distribu-⁸⁶⁶ tions shown in Figure A.20. For simultaneous pulses the resolution is ~4 ps, but the timing ⁸⁶⁷ resolution slightly degrades as the time difference between pulses is increased. The large ⁸⁶⁸ RMS in the timing for uncalibrated data is due to the DLL wraparound offset of roughly

Parameter	Value	Comment	
Channels	6	die size constraint	
Sampling Rate 4-15 GSa/s		servo-locked on-chip	
Samples/channel	256	249 samples effective	
Recording Buffer Time 25 ns		at 10.24 GSa/s	
Analog Bandwidth 1.5 GHz			
Crosstalk	7%	max. over bandwidth	
	<1%	typical for signals $< 800 \text{ MHz}$	
Noise	$700 \ \mu V$	RMS (typical). RF-shielded enclosure. After calibration.	
DC RMS Dynamic Range	10.5 bits	12 bits logged. Linearity calibration for each cell.	
Signal Voltage Range	1 V	after linearity correction	
ADC conversion time $4 \ \mu s$		max. 12 bits logged at 1 GHz clock speed	
	250 ns	min. 8-bits logged at 1 GHz	
ADC clock speed	$1.4~\mathrm{GHz}$	max.	
Readout time	$0.8n~\mu{ m s}$	<i>n</i> is number of 64-cell blocks to read $(n = 24$ for entire chip)	
Sustained Trigger Rate 50 kHz		max. per chip. Limited by [ADC time + Readout time] ^{-1}	
Power Consumption 100 mW		max. average power	
Core Voltage 1.2 V		$0.13 \ \mu m CMOS standard$	

Table A.1: PSEC4 architecture parameters and measured performance results.

869 400 ps.

⁸⁷⁰ The performance and key architecture parameters of PSEC4 are summarized in Table A.1.

871	APPENDIX B
872	G4BEAMLINE FLUX SIMULATIONS
873	B.1 Beam Monte Carlo
874	To understand the flux, momenta, and particle types at the OTPC location, a simulation

was written using the G4beamline toolkit [47]. Figure B.2 and Figure B.3 and Figure B.4

Table B.1: Simulated particle ID, count, and expectation value of total momentum, $\langle P_{tot} \rangle$, at the OTPC location with an 8 GeV/c π^+ secondary beam. Particles with P_{tot} greater than 10 MeV/c were counted. (POT= π^+ on target). Numbers taken from simulation results shown in Figure B.4a.

PID	$N/(10^6 POT)$	$< P_{tot} >$	Note:
μ^{\pm}	800	$4.5 \ \mathrm{GeV/c}$	broadband 2.5-6 $\mathrm{GeV/c}$
π^{\pm}	20	5 GeV/c	small peak at 6GeV/c (absorber punch-thru
			dE/dx), otherwise scattered over 1-6 GeV/c
e^{\pm}	<5	$< 100 \ {\rm MeV/c}$	
γ	20	< 100 MeV/c	
р	<5	$<2 { m GeV/c}$	

Figure B.1: Plan view of the MCenter-7 (MC7) enclosure. The OTPC was installed ~ 3 m behind a 1.08 m thick steel collimator/absorber block, which sits directly behind a Copper target along the secondary beam-line. The flux at the OTPC location is the punch-thru and ejecta from the collimator block. (Mechanical drawing is courtesy of the Fermilab PPD/Mechanical Department)

Figure B.2: Simulated particle type and total momentum, inclusive over the OTPC fiducial cross-section for an 8 secondary π^+ beam on target. Two-million pions-on-target (POT) were simulated.

Figure B.3: Simulated particle type and total momentum, inclusive over the OTPC fiducial cross-section for a 16 GeV/c secondary π^+ beam on target. This simulation was the result of 1.7M POT.

Figure B.4: Simulated beam at OTPC: triggered, particle type and momenta for (a) 8 and (b) 16 GeV/c secondary π^+ beam. The upper plots are cut on only beam that passes the front-trigger cut, and the bottom plots show these that also pass the back-trigger cut.

Figure B.5: ACNET plot of the π^+ counts delivered to MCenter on 10-May 2015 00:00-00:30. The counts on the copper target are represented by the green lines, which max out at ~40kCounts per spill. Plot courtesy of Fermilab Accelerator Divion/LArIAT collaboration.

REFERENCES

- [1] D.R. Nygren. The Time-Projection Chamber A new 4π detector for charged particles. SLAC Reports PEP-144, 1974.
- [2] D. Fancher, H.J. Hilke, S. Loken, P. Martin, J.N. Marx, D.R. Nygren, P. Robrish,
 G. Shapiro, M. Urban, W. Wenzel, W. Gorn, and J. Layter. Performance of a time
 projection chamber. *Nucl.Instr.Meth A*, 161:383–390, 1979.
- [3] S. Klein. The time projection chamber turns 25. CERN Courier, 2004.
- [4] H.J. Hilke. Time projection chambers. *Rep. Prog. Phys.*, 73, 2010.
- [5] C. Rubbia. The liguid-argon time projection chamber: a new concept for neutrino detectors. *CERN-EP/77-08*, 1977.
- [6] P. A. Cerenkov. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. *Phys. Rev.*, 52:378–379, Aug 1937.
- [7] J. Brack et. al. Characterization of the Hamamatsu R11780 12 inch Photomultiplier Tube. Nucl.Instr.Meth A, 712:162–173, 2013.
- [8] MiniBooNE Collaboration (S.J. Brice et al.). Photomultiplier tubes in the MiniBooNE experiment. *Nucl.Instr.Meth A*, 562:97–109, 2006.
- [9] R.B. Patterson et al. The extended-track event reconstruction for MiniBooNE.
 Nucl.Instr.Meth A, 608:206-224, 2009.
- ⁸⁹⁴ [10] LAPPD collaboration, psec.uchicago.edu.
- ⁸⁹⁵ [11] B.W. Adams et. al. An internal ALD-based high voltage divider and signal circuit for ⁸⁹⁶ MCP-based photodetectors. *Nucl.Instr.Meth A*, 780:107–113, 2015.
- ⁸⁹⁷ [12] B.W. Adams et. al. Timing characteristics of large area picosecond photodetectors.
 ⁸⁹⁸ Nucl.Instr.Meth A, 795:1–11, 2015.
- ⁸⁹⁹ [13] J. Milnes and J. Howorth. Picosecond time response characteristics of micro-channel ⁹⁰⁰ plate PMT detectors. *SPIE USE*, 8:89–100, 2004.
- [14] N. Kishimoto, M. Nagamine, K. Inami, Y. Enari, and T. Ohshima. Lifetime of MCP PMT. Nucl.Instr.Meth A, 564:204–211, 2006.
- [15] O.H.W. Siegmund et al., for LAPPD Collaboration. Atomic layer deposited borosilicate
 glass microchannel plates for large area event counting detectors. Nucl.Instr.Meth A,
 695:168–171, 2012.
- [16] M.J. Minot, et. al. Pilot production & commercialization of LAPPDTM. Nucl.Instr.Meth A, 787:78–84, 2015.

- [17] H. Grabas, H.Frisch, E.Oberla, J.-F. Genat, R. Northrop, D. McGinnis, B. Adams,
 M. Wetstein, R. Obaid, and F. Tang. RF Strip-Line Anodes for Psec Large-Area MCPbased Photodetectors. *Nucl.Instr.Meth A*, 711:123–131, 2013.
- 911 [18] PHOTONIS USA Pennsylvania, Inc. Planacon XP85022 32 × 32 datasheet, Jan 2014.
 912 http://www.photonisusa.com.
- [19] I. Tamm. Radiation emitted by uniformly moving electrons. J. Phys. USSR, 1:439,
 1939.
- ⁹¹⁵ [20] J. Beringer, et. al. (PDG). Review of Particle Physics Passage of particles through
 ⁹¹⁶ matter. Phys. Rev. D, 86:323–338, 2012.
- ⁹¹⁷ [21] J.D. Jackson. *Classical Electrodynamics*. John Wiley & Sons, Inc., 3rd edition, 1999.
- ⁹¹⁸ [22] B. Ratcliff and J. Schweining. Handbook of particle detection and imaging, volume 2, chapter 18: Cherenkov Counters. Springer, 2012. Edited by C. Grupen and I. Buvat.
- ⁹²⁰ [23] M. Daimon and A. Masumura. Measurement of the refractive index of distilled water ⁹²¹ from the near-infrared region to the ultraviolet region. *Appl. Opt.*, 46:3811–3820, 2007.
- [24] G. Orebi Gann et. al. Advanced Scintillator Detector Concept (ASDC): A Concept
 Paper on the Physics Potential of Water-Based Liquid Scintillator. arxiv:1409.5864,
 2014.
- ⁹²⁵ [25] M.C. Sanchez, M. Wetstein, et. al. Letter of Intent: The Accelerator Neutrino Neutron ⁹²⁶ Interaction Experiment (ANNIE). arXiv:1504.0180, 2015.
- [26] C Aberle, A Elagin, H J Frisch, M Wetstein, and L Winslow. Measuring directionality
 in double-beta decay and neutrino interactions with kiloton-scale scintillation detectors.
 Journal of Instrumentation, 9(06):P06012, 2014.
- ⁹³⁰ [27] M. Askins, et al. The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A
 ⁹³¹ WAter CHerenkov Monitor for ANtineutrinos. arXiv:1502.01132, 2015.
- ⁹³² [28] Credit to H. Nicholson first considering the idea of a photon-TPC in a neutrino exper-⁹³³ iment.
- [29] S. Seibert and A. LaTorre. Fast Optical Monte Carlo Simulation With Surface-Based
 Geometries Using *Chroma*. http://chroma.bitbucket.org/, 2011.
- ⁹³⁶ [30] Optical data from: (1) Enhanced Aluminum 4-6 λ First-Surface Mirror, Edmunds Op-⁹³⁷ tics (2) Fused-silica glass port www.mcmaster.com (3) Optical coupling gel, code 0607, ⁹³⁸ Cargille Labs. Spray paint used for light absorbing surfaces: Rust-oleum, textured, ⁹³⁹ indoor/outdoor, black.
- W. Walkowiak. Drift velocity of free electrons in liquid argon. Nucl.Instr.Meth A, 449:228–294, 2000.

- [32] S. Fukuda et al. The Super-Kamiokande detector. Nucl.Instr.Meth A, 501:418–462, 2003.
- ⁹⁴⁴ [33] S. Dazeley and M. Yeh. Private communication, 2015.
- 945 [34] F. Tang. Private communication.
- [35] H.A. Wheeler. Transmission-line properties of a Strip on a Dielectric Sheet on a Plane.
 IEEE Trans. Microwave Theory Tech, 25:631–647, 1977.
- [36] P. Russer. Electromagnetics, Microwave Circuit, And Antenna Design for Communications Engineering. Artech House, 2nd edition, 2006. Chapter 7, Transmission-Lines and Waveguides.
- ⁹⁵¹ [37] Samtec, Inc. 34 AWG Micro Coax Cable Datasheet, May 2015.
- [38] E. Oberla, H. Grabas, J.-F. Genat, H.J. Frisch, K. Nishimura, and G. Varner. A 15
 GSa/s, 1.5 GHz bandwidth waveform digitizing ASIC. Nucl.Instr.Meth A, 735:452–461, 2014.
- [39] G.S. Varner, L.L Ruckman, J.W. Nam, R.J. Nichol, J. Cao, P.W. Gorham, and
 M. Wilcox. The Large Analog Bandwidth Recorder and Digitizer With Ordered Readout (LABRADOR) ASIC. *Nucl.Instr.Meth A*, 583:447–460, 2007.
- [40] K. Nishimura and A. Romero-Wolf. A Correlation-Based Timing Calibration & Diagnostic Technique for Fast Digitization ASICs. *Physics Procedia*, 37:1707–1714, 2012.
- [41] D. Stricker-Shaver, S. Ritt, and B.J. Pichler. Novel calibration method for switched
 capacitor arrays enables time measurements with sub-picosecond resolution. Nuclear
 Science, IEEE Transactions on, 61(6):3607–3617, Dec 2014.
- ⁹⁶³ [42] Advanced Laser Diode Systems. Picosecond Diode Laser PiLas Manual and Test
 ⁹⁶⁴ Report, Jun 203.
- [43] B.W. Adams et al. Measurements of the gain, time resolution, and spatial resolution of a 20×20 cm² MCP-based Picosecond Photo-Detector. *Nucl.Instr.Meth A*, 732:392, 2013.
- [44] J.-F. Genat, G. Varner, F. Tang, and H.J. Frisch. Signal Processing for Pico-second
 Resolution Timing Measurements. Nucl.Instr.Meth A, 607:387–393, 2009.
- 970 [45] Fermilab Test-Beam Facility. http://ppd.fnal.gov/ftbf/.
- 971 [46] F. Cavanna et. al. LArIAT: Liquid Argon In A Testbeam. arXiv:1406.5560, 2014.
- ⁹⁷² [47] T.J. Roberts and D.M. Kaplan. G4beamline simulation program for matter-dominated beamlines. In *Particle Accelerator Conference, 2007. PAC. IEEE*, pages 3468–3470, 2007.
- 975 [48] J.Defazio, Photonis USA. Private communication, 2015.

- [49] A.S. Tremsin and O.H.W Siegmund. Spatial distribution of electron cloud footprints
 from microchannel plates: Measurements and modeling. *Review of Scientific Instru- ments*, 70(8):3282–3290, 1999.
- ⁹⁷⁹ [50] D. Breton, E. Delagnes, J. Maalmi, K. Nishimura, L.L. Ruckman, G. Varner, and
 J. Va'vra. High resolution photon timing with MCP-PMTs: A comparison of a commercial constant fraction discriminator (CFD) with the ASIC-based waveform digitizers
 TARGET and WaveCatcher. Nucl.Instr.Meth A, 629(1):123–132, 2011.
- ⁹⁸³ [51] S.A. Kleinfelder. Development of a switched capacitor based multi-channel transient
 ⁹⁸⁴ waveform recording integrated circuit. *IEEE Trans. Nucl. Sci*, 35(1), Feb 1988.
- [52] G. Haller and B. Wooley. A 700 MHz Switched Capacitor Analog Waveform Sampling
 Circuit. SLAC-PUB-6414, 1993.
- [53] E. Delagnes, Y. Degerli, P. Goret, P. Naymana, F. Toussenel, and P. Vincent. SAM: A
 new GHz sampling ASIC for the H.E.S.S.-II Front-End Electronics. *Nucl.Instr.Meth A*,
 567:21–26, 2006.
- [54] K. Bechtol, S. Funk, A. Okumura, L. Ruckman, A. Simons, H. Tajima, J. Vandenbroucke, and G. Varner. TARGET: A Multi-Channel Digitizer Chip for Very-HighEnergy Gamma-Ray Telescopes. J. Astroparticle Physics, 36:156–165, 2012.
- ⁹⁹³ [55] S.A. Kleinfelder. Gigahertz Waveform Sampling and Digitization Circuit Design and ⁹⁹⁴ Implementation. *IEEE Trans. Nucl. Sci*, 50:156–165, 2003.
- [56] G.S. Varner, P. Gorham, and J. Cao. Monolithic Multi-Channel GSa/s Transient Wave form Recorder for Measuring Radio Emissions from High Energy Particle Cascades.
 Proc. SPIE Int. Soc. Opt. Eng, 4858:31, 2003.
- ⁹⁹⁸ [57] C. Broennimann, R. Horisberger, and R. Schnyder. The Domino Sampling Chip: A 1.2
 ⁹⁹⁹ GHz Waveform Sampling CMOS Chip. Nucl.Instr.Meth A, 420:264–269, 1999.
- [58] S. Ritt. The DRS Chip: Cheap Waveform Digitization in the GHz Range.
 Nucl.Instr.Meth A, 518:470–471, 2004.
- [59] J. Milnes and J. Howorth. Picosecond Time Response Characteristics of Micro-channel
 Plate PMT Detectors. SPIE USE, 8 5580:89–100, 2009.
- ¹⁰⁰⁴ [60] P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin. SiPM for fast Photon-¹⁰⁰⁵ Counting and Multiphoton Detection. *Optics Express*, 15:14539–14549, 2007.
- [61] R.H. Dennard, F. H. Gaennsslen, H. N. Yu, V.L Rideout, E. Bassous, and A.R. LeBlanc.
 Design of Ion-Implemented MOSFETs with Very Small Physical Dimensions. *IEEE J. Solid-State Circuits*, SC-9:256–268, 1974.
- [62] Y. Taur et. al. CMOS scaling into the nanometer regime. *Proc. IEEE*, 85(4):486–504,
 1997.

¹⁰¹¹ [63] IBM Corporation. CMRF8SF Model Reference Guide, 2008. V.1.4.0.10.

[64] The MOSIS Service. Wafer Electrical Test Data and SPICE Model Parameters. Run:
 V18B. Available on-line (accessed 4 Feb. 2013). http:://www.mosis.com/pages/
 Technical/Testdata/ibm-013-prm.

1015[65]E. Oberla, H. Grabas, M. Bogdan, H. Frisch, J.-F. Genat, K. Nishimura, G. Varner,1016and A. Wong. A 4-Channel Waveform Sampling ASIC in 0.13 μ m CMOS for Front-End1017Readout of Large-Area Micro-Channel Plate Detectors. Physics Procedia, 37:1690–1698,10182012.

- ¹⁰¹⁹ [66] M. Cooney, M. Andrew, K. Nishimura, L. Ruckman, G. Varner, H. Grabas, E. Oberla, ¹⁰²⁰ and J.-F. Genat. Multipurpose Test Structures and Process Characterization using 0.13 ¹⁰²¹ μ m CMOS: The CHAMP ASIC. *Physics Procedia*, 37:1699–1706, 2012.
- ¹⁰²² [67] H. Chang et. al. A Wide-Range Delay-Locked Loop With a Fixed Latency of One Clock ¹⁰²³ Cycle. *IEEE J. Solid-State Circuits*, 37:1021–1027, 2002.
- ¹⁰²⁴ [68] O. Milgrome, S. Kleinfelder, and M. Levi. A 12 Bit Analog to Digital Converter for ¹⁰²⁵ VLSI Applications in Nuclear Science. *IEEE Trans. Nucl. Sci*, 39:771–775, 1992.