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Abstract

Quantum efficiency (QE) and spectral responsivity are measured
of a set of photo-multiplier tubes (PMTs) from the Moscow Electric
Lamp Plant (MELZ) that were made using the air-transfer process
similar to that we have been developing for the Large-Area Picosecond
Photo-Detector (LAPPD). We compared the quantum efficiency and
the spectral responsivity that was measured with the expected values
for the type of photo-cathode used in these photo-multiplier tubes and
the printed values for these photo-multiplier tubes. We found that
the measured value of the quantum efficiency is close to the expected
values for the known photo-multiplier tube.
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1 Photo-Cathodes and Quantum Efficiency
Quantum efficiency is defined as the ratio of the number of converted photo-
electrons to the number of photons incident on the window of a photo-
sensitive device. There are many factors that contribute to the quantum
efficiency of a photo-multiplier tube. These can include, but are not limited
to, the geometry of the tube, and the photo-cathode material.

These photo-multiplier tubes are made using a K2CsSb photo-cathode,
where its spectral responsivity vs. wavelength are shown in fig. 1. Other
characteristics typical of this type of photo-cathode can be seen in tab 1.
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The geometry of the photo-multiplier tube also has an affect on the quan-
tum efficiency. In the case of the MELZ photo-multiplier tubes, we only have
the specifications for one of the tubes, FEU-527. They can be seen in tab. 1.

In measuring quantum efficiency, it is not possible to directly count the
number of incoming photons and the number of outgoing photo-electrons.
As such, it is necessary to instead measure the power (or intensity) of the
incoming light and the current of the photo-electrons.

Below is the derivation for determining the quantum efficiency from the
intensity of the incoming light and the measured photo-current.
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Where ne is the number of converted photo-electrons, nγ is the number
of incident photons, e is the electric charge of an electron, t is time, I is the
current measured out of the photo-multiplier tube, h is Planck’s constant,
ν is the frequency of the light source, P is the measured power of the light
source, c is the speed of light in a vacuum, and λ is the wavelength of the
light source.

Wavelength of
Maximum

Response (nm)

Responsivity at
λmax (mA

W
)

QE at λmax (%)

Characteristics
of K2CsSb

photo-cathode

380-420 100 >30

Characteristics
of FEU-527

photo-multiplier
tube

410 66 20

Table 1: Characteristics typical of a K2CsSb photo-cathode and the FEU-527
photo-multiplier tube [1] [3].
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Figure 1: Expected spectral responsivity of various photo-cathodes. K2CsSb
is the alkali used in the MELZ photo-multiplier tubes. [1]
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2 Description of MELZ Photo-Multiplier
Tubes

2.1 Description of the Cathode-to-Anode
Photo-Multiplier Tube

The cathode-to-anode photo-multiplier tube (marked as N5) does not have
any dynodes between the photo-cathode and the anode, hence the name
"cathode-to-anode".

This photo-multiplier tube has 14 pins on its base. Three of the pins
are connected to the photo-cathode, three of the pins are connected to the
anode, and eight of the pins are not connected to anything, and as such are
called "floating pins" (see fig. 2).

There are two chains of pin sockets used to keep all pieces of metal at a
known potential. One chain keeps all of the anode pins and floating pins at
the ground and the other chain keeps the photo-cathode pins at the negative
potential (see fig. 3).

Since a negative polarity is used, it is necessary to take precautions to
minimize the effect it may have on the dark current and to also protect the
tube against the potentially destructive voltage gradients across the glass.
For this reason, the tube is wrapped in an aluminum guard cylinder which is
kept at the photo-cathode potential, keeping the potential inside and outside
the tube the same [2]. The yellow wire connects the aluminum guard cylinder
to the negative potential. A layer of electrical tape is wrapped around the
photo-multiplier tube for safety and also as insulation between the guard
cylinder and the magnetic shield (see fig. 4).

2.2 Description of the FEU-527 (ФЕУ-527)
Photo-Multiplier Tube

The FEU-527 tube (marked as N198) has fifteen dynodes [3].
This photo-multiplier tube has 22 pins on the base of the tube, in two

rows, with 15 pins on the first row and 7 on the second row (see fig. 5).
There is one pin that connects to the photo-cathode of the photo-multiplier

tube. The remaining 21 pins are either connected to one of the amplification
stages, the anode, the focusing apparatus, or are not connected to anything.
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To tie the pins that are not connected to the photo-cathode, a chain of
pins, similar to that in fig. 3, was made. This chain can be seen in fig. 6.

Similar to the cathode-to-anode photo-multiplier tube in section 2.1, the
FEU-527 has an aluminum guard cylinder for insulation and safety which is
kept at the photo-cathode potential (see fig. 6).

Figure 2: The figure on the left is the window of the cathode-to-anode photo-
multiplier tube. It admits light, while a layer of photo-cathode inside emits
electrons. The figure on the right is the base of the photo-multiplier tube. It
has fourteen connector pins.
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Figure 3: There are 14 pins on the base of the photo-multiplier tube: three
pins connected to the photo-cathode, three pins connected to the anode,
and eight floating pins that are not attached to anything. The three photo-
cathode pins are interconnected by orange wires, with another orange wire
being attached, via an SHV cable, to the Fluke power supply. The three
anode pins and the eight floating pins are interconnected by a chain of pin
sockets and wire that have been soldered together. A blue wire is connecting
one of the anode pins to the 500 kΩ resistor. The yellow wire is attached to
the guard cylinder at the cathode potential.
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Figure 4: An aluminum guard cylinder is wrapped around the tube, keep-
ing the current running inside the tube, not leaking to the nearby glass.
Black tape is wrapped up outside the guard cylinder to insulate the photo-
multiplier tube from the magnetic shield. A yellow wire is attached to the
guard cylinder, which would then be connected to the photo-cathode.
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Figure 5: The figure on the upper-left corner is the window of FEU-527
cathode-to-anode photo-multiplier tube. It admits light, while a layer of
photo-cathode inside emits electrons. The figure on the upper-right is the
base of FEU-527. It has two rows, twenty-two connector pins. The figure on
the bottom is the side of FEU-527.
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Figure 6: An aluminum guard cylinder is wrapped around the tube to prevent
from leakage. A yellow wire is attached to the guard cylinder, so that we
could connect it to the photo-cathode. The orange wire is connected to the
cathode pins and the blue wire is connected to the anode pins, which is
soldered together with the floating pins.

3 Physical Set-Up and Procedure

3.1 The Physical Set-up

The set-up used for measuring the quantum efficiency of the MELZ photo-
multiplier tubes is a dark box made out of a brief case with holes cut into it,
which is lined on the bottom with foam fitted for the photo-multiplier tube
and optical cables, foam blocks set in the holes where the cables run through,
foam strips lining the lip of the brief case, and a black felt sheet draped over
the case.
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A Fluke 415B High Voltage Power Supply is used with a negative output
with respect to the chassis-ground, which is at earth ground. The photo-
cathode of the photo-multiplier tube is kept at a negative potential.

A 500 kΩ resistor is connected to prevent damage from high currents.
A Prizmatix FC5-LED Multichannel LED Light Source is used as the

light source. There are two different set-ups used for shining the light on the
photo-muliplier tube window. One involves an external set of cage plates that
allow for filters to be added and changed externally (see fig. 7). The other
has the optical cable go directly from the light source to the dark box, with
filters added within the dark box. The former allows for quicker changing
of filters without affecting the interior of the dark box, but also reduces the
power such that only a weak filter can be used. The latter allows for a greater
range of filters to be used, but does expose the interior of the dark box to
ambient light whenever the filters are changed.

The path of the cables, the power supply, photo-multiplier tube, resistor,
and the ammeter is diagrammed in fig. 8.

3.2 The Procedure and Safety Considerations

Before approaching the dark box, the high voltage power supply is off and
fully disconnected from the photo-multiplier tube, with the coaxial cable
wrapped up. The photo-multiplier tube is placed inside of the magnetic
shield. The end of the optical cable is positioned to point at the photo-
multiplier tube window. At this point, the connections follows fig. 8, and
the aluminum guard cylinder as well as the magnetic shield are attached
to the photo-cathode potential. The case has foams in the holes and lips,
and black felt sheets over it. blocking ambient light. Only at this time do
we take the cable from the off power supply and connect it to the photo-
multiplier tube via a coaxial cable that comes out of the dark box. Then the
power supply is turned on, and, without touching the dark box, we use the
Prizmatix to turn the light on and off, and change the voltage on the Fluke
power supply to measure the current from the ammeter. The power supply
is always turned off while making adjustments in the dark box.
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Figure 7: Set-up for adding a filter in the path of the optical cables without
opening the dark box. Clockwise from top left: top view, front view, side
view, full set-up, expanded view that shows where the filter is placed, and
back view. The orange optical cable connects one of the channels of the
Prizmatix to the set of four cage plates. The two cage plates in the middle
are used for adding filters, while the two cage plates on the side are used to
fix the ends of the optical cables. The other optical cable connects the set
of cage plates into the dark box, with the end pointing at the window of the
photo-multiplier.
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Figure 8: Circuit diagram of the cables, Fluke High Voltage Power Supply,
photo-cathode and anode of the photo-multiplier tube, current limiter (resis-
tor), and a Keithley Ammeter. The potential is relative to the chassis-ground
of the Fluke power supply, which is at earth-ground.

4 Measuring the Quantum Efficiency of the
Cathode-to-Anode Photo-Multiplier Tube

For measuring the quantum efficiency, we used an exterior set of cage plates
that allowed us to add filters without opening the dark box (see fig. 7).
Using a Prizmatix FC5-LED Multichannel LED Light Source, the quantum
efficiency of the cathode-to-anode photo-multiplier tube was tested at four
wavelengths: 365 nm, 405 nm, 500 nm, and 535 nm. Keeping the power
of the light source at approximately 1-2 nW, the photo-current vs. voltage
curves plateaus at different values of photo-current (fig. 9). As seen in fig.
10, the quantum efficiency was found to be highest at 365 nm, and decreases
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at longer wavelengths.
The 90% plateau-current-voltage vs. photon energy is plotted in fig. 11.

Wavelength
(nm)

Photon Energy
(eV)

QE (%) 90% Plateau
Voltage (V)

365 3.40 15.6 125
405 3.06 8.6 60
500 2.48 2.8 20
535 2.32 0.7 14

Table 2: Table of results from measuring the spectral response of the cathode-
to-anode photo-multiplier tube.

4.1 Exposure to Ambient Light

The plateauing photo-current is left overnight and compared with the photo-
current measured on the first day, to see the effect of longer time. Since
the photo-multiplier tube is exposed to ambient light when adjustments are
made, the effect of short exposure to light is also tested by exposing the tube
to ambient light for five minutes and comparing the plateauing photo-current.

Longer plateauing time causes decrease in current, but does not affect
plateauing photo-current significantly. A five-minute exposure to light results
in an overall increase in photo-current, therefore a higher quantum efficiency,
but it still falls in the range of uncertainty. Keeping the photo-multiplier tube
in dark box for 30 minutes is sufficient to lower the plateauing photo-current
to the original value.
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Figure 9: Photo-current vs. Voltage at different wavelengths. The green
curve shows the measurements at 365nm, 0.001µW, with photo-current
plateauing at 0.046 nA at about 200 V (quantum efficiency is about 15.6%).
The blue curve shows the measurements at 405nm, 0.001µW, with photo-
current plateauing at 0.028 nA at about 50 V (quantum efficiency is about
8.6%). The red curve shows the measurements at 500nm, 0.002µW, with
photo-current plateauing at 0.022 nA at about 40 V (quantum efficiency is
about 2.8%). The cyan curve shows the measurements at 535nm, 0.001µW,
with photo-current plateauing at 0.003 nA at about 14 V (quantum efficiency
is about 0.7%).
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Figure 10: Two plots, one that shows quantum efficiency vs wavelength and
the other that shows spectral responsivity vs wavelength. Quantum efficiency
is calculated using equation 1. Responsivity is defined as the ratio of outgoing
current to incoming power, and is in units of nA

µW
.
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Figure 11: 90% plateau voltage vs photon energy showing how at increasing
photon energy, the point at which the current plateaus increases.
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Figure 12: Blue curve shows photo-current vs. voltage at 405nm, 0.001 µW.
Green curve shows photo-current vs. voltage after plateauing overnight.
Longer plateauing time causes decrease in current, but does not affect
plateauing photo-current significantly. Red curve shows photo-current vs.
voltage after exposing the tube to ambient light for 5 minutes. A short ex-
posure to light results in an overall increase in photo-current, which raises
quantum efficiency, but still fall in the range of uncertainty of power. The
cyan curve shows photo-current vs. voltage after keeping photo-multiplier
tube in dark with photo-current plateauing for another 30 minutes. Photo-
current decreases with time, and 30 minutes is sufficient to lower the plateau-
ing photo-current, close to the original values (blue and green curve). Pink
curve shows the effect of another 5 min exposure, which raises photo-current
again.

5 Measuring the Quantum Efficiency of the
FEU-527 Photo-Multiplier Tube

The first measurement of the quantum efficiency resulted in a quantum effi-
ciency of 40%. This is double the expected value of 20% [3]. As a result, we
tried to see what could be causing this discrepancy.

Our hypothesis was that there could be some sort of internal reflection
causing the increased quantum efficiency. To test this, we measured the
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quantum efficiency of the tube at an angle to see how it would change. To
take into account how distance would change while putting the tube at an
angle, we also measured how distance affects the quantum efficiency. The
results of our measurements can be seen in fig. 13.

The distance between the photo-multiplier tube window and the light
source has an effect on the quantum efficiency of the tube that is most likely
caused by the fact that at a greater distance the light disperses and the
actual power of the light is less than measured. This suggests that the most
accurate quantum efficiency measurement is at 0 cm from the light source.
When the tube was placed at an angle to the light source, the center of the
window was 0.5 cm and 1.0 cm from the light source and at an angle of
approximately 22◦ and 39◦ from the parallel, respectively. Figure 14 shows
that the relationship between quantum efficiency and the distance is linear
and that the quantum efficiency at the angled measurement fits in this linear
relationship, despite being at an angle, which suggests that the angle does
not affect the quantum efficiency measurement.

Since there is some sort of dispersal of the light it was important to see
by how much did this affect the quantum efficiency. To do this, we measured
the intensity of the light at various distances of the Thorlabs detector from
the light source. Using these measurements, assuming that at the closest
measurement the detector has all of the light on it, the size of the light cone
can be determined and used to correct previous measurements of power and
quantum efficiency.

To begin, we take our list of powers and use our assumption that at the
smallest distance the detector is completely filled to determine what the area
of the cross section section of the light cone is at a given power measurement.

Ax =
467nW · 0.116in2

Px
(2)

Where Ax is the area at distance x from the light source and Px is the
measured power at distance x from the light source. 467 nW is the power
measured at the closest measurement and is the assumed actual power from
the light source. 0.116 in2 is the area of the detector measuring the power.

Using Ax, we determine the radius of the cross section of the light cone
with
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rx =

√
Ax
π

(3)

Using the data from tab. 3, we determine that the ratio of rx to x is
approximately 0.257.

Distance (in) Px (nW) Ax (in2) rx (in)
0.125 467 0.116 0.193
0.625 348 0.156 0.223
1.125 147 0.370 0.343
1.625 75 0.725 0.480
2.125 46 1.18 0.613
2.625 30 1.81 0.760
3.125 22 2.47 0.887
3.625 16 3.40 1.04
4.125 12 4.53 1.20
5.125 9 6.04 1.39

Table 3: Using the list of power measured at distance x from the light source
(Px) to find the area of the cross section of the light cone (Ax) and the
respective radius (rx).

To find the actual power of the light source, we first find the radius of
the light cone at the distance at which the power was measured, xm. This
is found with rxm = 0.257/xm. Then we find the area of this cross section,
Axm , and multiply that by Pxm/0.116 in2. The result is the actual power of
the light source, PA.

For the quantum efficiency measurements in figs. 13 and 14, the distance
from the light source (xm) was 0.825 in. and the measured power (Pxm) for
the 405 nm quantum efficiency was 1 nW. Using the above method, rxm is
approximately 0.312 in, Axm is approximately 0.305 in2, and PA is 2.63 nW.

Using PA, we can correct the quantum efficiency. From fig. 13, the
quantum efficiency at 405 nm, 0 cm from the light fixture (which in actuality
is 0.825 in. from the light source) is 47%. Correcting for the actual power of
2.63 nW instead of 1 nW, the quantum efficiency is 18%.

This correction implies that any quantum efficiency measurements made
prior to this needs to be corrected for the geometry of the light cone.
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If we assume that the cone is the same for each wavelength, the spec-
tral response for the FEU-527 photo-multiplier tube is much closer to the
published value of 20% f)or this tube (see fig. 15.

Figure 13: Quantum efficiency vs wavelength at different configurations of
the photo-multiplier tube with respect to the light source. Increasing the dis-
tance between the light and the photo-multiplier tube reduces the quantum
efficiency. Our hypothesis is that a cause of the high quantum efficiency is
reflection of light within the photo-multiplier tube. To test this, we moved
the tube to be at an angle to the light source. This lowers the quantum
efficiency, but not significantly enough for that to be the root cause of the
high quantum efficiency.
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Figure 14: Quantum efficiency vs distance from the light source showing
that the relationship is linear, even when the tube is at an angle to the light
source.
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Figure 15: Spectral quantum efficiency after correcting for dispersion of light
at increasing distance from the light source.

6 Conclusions
As can be seen in tab. 2 and in sec. 5, the photo-multiplier tubes measured
do not agree with the expected values seen in tab. 1, with the cathode-
to-anode photo-multiplier tube having a maximum quantum efficiency of
15.6% at 365 nm and the FEU-527 photo-multiplier tube having a maximum
quantum efficiency of 18% at 405 nm. This latter quantum efficiency is close
to the expected value for this tube [3], but is not consistent with the expected
value for a K2CsSb photo-cathode [1].
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