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Abstract

ADC data collected on an ACDC card with a generated 100 MHz sine wave input
are analyzed with the goal of understanding the measurement noise in the system. Best
fits to models are performed, and the residuals of the fits are examined. We take the
point of view that correlations of the residuals with any system parameters represent
systematic errors that can be measured and used for calibration.

After all calibration is complete, we find that remaining noise levels are in the range
of 0.6 mV to 0.9 mV regardless of whether the PSEC4 is powered by a linear voltage
regulator or a switching voltage regulator. These noise levels are consistent with earlier
measurements.

One result of this analysis is the development of a method to perform time-base
calibration for a PSEC chip using only the data from 50 software triggers. This method
is shown to have an accuracy comparable with the ‘zero crossing method’ with 1× 106

zero crossings, which takes about 50 000 triggers of data.

1 Introduction

In August of 2018, Audrey Whitmer collected data sets of 50 software triggers each from
modified and unmodified ACDC boards. The modification consisted of providing the 1.2 V
supply voltage for the PSEC4 chips from an external switching power regulator instead of the
usual linear regulator on the ACDC board. A Tektronix AWG (Arbitrary Wave Generator)
supplied a 100 MHz sine wave input to a single channel on the ACDC board.

In her report on her work [1], Audrey compared only 4 triggers from a board (ACDC board
24) in each state, modified and unmodified, and analyzed them using a simple least squares
fit and the Excel Solver. The standard deviation of the residuals of the fits for both board
states amounted to approximately 12.5 ADC units, or about 12.5× (1.0 V)/4096 = 3.1 mV.
This level of noise differs from the 3 ADC units, or about 0.7 mV, reported by Oberla, et
al. [2] Audrey speculated that the discrepancy was due to the lack of time-base calibration.

In light of this, we wish to investigate whether it is possible to use her existing data sets
to calibrate a PSEC4 chip well enough to match the previously observed level of noise.
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2 The Method

After performing a best fit of a model to collected data, we can look for correlations of the
fit residuals to various system parameters. True noise would not correlate with anything,
so we assume that any statistically significant observed correlation points to an area of the
system that needs to be calibrated. There are four correlations in particular that we will
look at.

1. Correlation of residuals with the voltage being measured.

2. Correlation of residuals with the voltage being measured on a per-cell basis.

3. Correlation of residuals with the trigger number.

4. Correlation of residuals with the time derivative of the voltage.

Each of these will be handled in a section below.

3 The General Problem

We feed a generated sine wave into a channel on an ACDC board and record ADC measure-
ments for m triggers. We call the measurements dkj for trigger number k and cell number
j. A ‘software’ trigger is used, so that the phases of the wave captured by each trigger are
random.

In an ideal case, we would know that our input is an AC coupled sine wave, with pedestals
subtracted, so we could try to fit to a simple sine wave with no baseline. In real cases we do
observe that a baseline offset survives. So we would try to minimize σ2χ2 in:

σ2χ2 =
m−1∑
k=0

n−1∑
j=0

(Asin(θj + φk) +B − dkj)2 (1)

where the free parameters are an amplitude A, a baseline B, a set of phases φk for each of
m triggers, and a set of time sample points θj with one for each of n cells.

Note that it is convenient for the math to measure ‘times’ θj in radians. Since we know
the frequency of the input signal, we can convert to conventional time units later.

A typical best fit problem would have the σ2 dividing each of the summands on the right
hand side of equation 1, and it would represent the variance on each measurement. We do
not know this value, so we are using a bootstrap method. After performing the best fit, we
will assume that χ2 ≈ ndof , where ndof is the number of degrees of freedom, and that will
let us estimate σ2. The resulting σ is what we will report as ‘noise’.

If the parameters θj and φk were known, then solving for the optimal A and B would be
a trivial problem in linear algebra. But with θj and φk being inside the sine function, and
there being hundreds of dimensions to search, a direct solution is not possible.

As a result we will approach the problem by finding approximate solutions for θj and φk
and then incrementally improve them to reach the optimal solution. We will cycle through
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a process of fitting the shape of the waveform, and then updating θj and φk, and then fitting
the shape again with those new parameters. This process converges quickly.

The first approximation we make is to assume that all time steps are equal so that
θj = j∆θ, for some ∆θ. The period of the sine wave is 2π/∆θ when expressed as a number
of cell samples. We know the frequency of our generated sine wave at the start and the
nominal cell capture rate of the ACDC card. Using those we make a preliminary guess at
the value of ∆θ.

If we take a value for ∆θ as a given, then it is easy to find the optimum (minimized)
solution for the following:

σ2χ2 =
m−1∑
k=0

n−1∑
j=0

(Cksin(j∆θ) +Dkcos(j∆θ) +Bk − dkj)2 (2)

Equation 2 has three free parameters for each trigger and we identify these as Ck ≈
Acos(φk), Dk ≈ Asin(φk), and Bk ≈ B, where A, B, and φk are free parameters from
equation 1. This is nearly a set of independent fits for each trigger, except that they are
bound together by a common value for ∆θ.

After performing the above fit for the whole set of triggers, we have the approximate
solutions for parameters in equation 1:

tan(φk) =
Dk

Ck
(3)

A2 =
1

m

m−1∑
k=0

(C2
k +D2

k) (4)

B =
1

m

m−1∑
k=0

Bk (5)

Note that equations 3 and 4 have two solutions, where φk differs by π and A can be
positive or negative. We will choose the solution that makes A positive. That is, we choose
the solution where the sign of cos(φk) is the same as the sign of Ck.

Since we have taken ∆θ as given, we will need to vary it up and down to ‘manually’ search
for the best wave period. Our initial guess is close to correct, so this is not difficult. (The
optimization problem involves such simple linear algebra that 100 guesses for ∆θ, covering
some range, can be evaluated in less than a second.)

After performing these fits over all triggers, we will have a set of phases φk that are quite
close to the solution we are looking for.

For every real data set we have looked at, there is a significant value observed at this
point for the baseline B. So we remove it here, and from this point on use a modified d′kj as
our dataset:

d′kj = dkj −B (6)
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4 Examples using real data

We will use samples collected by Audrey Whitmer in her test of switching power supplies
in August 2018. For ACDC boards 20 and 24, connected to ACC board 4, she collected
data with each card in a modified and unmodified state. (The modified state consisted of
a lifted output pin from a 1.2 volt linear voltage regulator, and the voltage supply replaced
by an external switching power supply board.) For each board in each state she recorded 50
software triggers on each of channels 3, 9, 15, 21, and 27. The channels are spaced 6 apart so
that each test employs a different PSEC4 ASIC on the ACDC card. (This makes a total of 20
sets of 50 triggers, of which we will only examine 4 sets in this paper.) The supplied signal
was a 100 MHz sine wave generated by the Tektronix AWG (Arbitrary Wave Generator)
model 5012. The AWG was set to supply waves of 1 V peak-to-peak, but produced only
about 0.2 V peak-to-peak, probably due to an incorrect mode setting. The AWG does not
generate true sine waves, but instead an approximate function derived from a limited number
of sample points. At 100 MHz its data rate (1.2 GS/s) restricts us to a maximum of 12 points;
this turns out to be important and we will need to take it into account.

We will begin by looking at data from channel 3 on the modified board 24. The data
from all 50 triggers was loaded from the file aw.4.24.3.acdc.dat.1 The file begins with a set
of measured pedestals2 for each cell, and these were subtracted from the data before the fit.
Figures 1 and 2 show the data for the first 25 triggers before and after the pedestal data was
subtracted. Removing the pedestal measurements makes an obvious difference.

1Collected on 8/14/2018 with the logData shell script.
2Collected by the takePed command, which was run before each logData.
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Figure 1: Raw data from the capture of 25 triggers. ADC values are
plotted on the vertical axis, and cell numbers on the horizontal axis.
There is a lot of noise to be seen as each cell measures voltage from a
slightly different baseline. Note that the measured ADC values range
only from about 1300 to 2200, instead of spanning the whole 0 to
4095 range.

Figure 2: The same 25 triggers as in figure 1 except that the pedestal
measurements from the header of the data file have been subtracted.

In figure 2 we can see ‘artifacts’ at the beginning and in the middle of each trigger data
set. This is likely the result of a firmware bug, and we observed similar behavior in most
channels on both ACDC cards that were tested. Something causes the recorded data to
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flatten out over certain cell ranges. (These cell ranges vary by channel and by ACDC card.)
As a result, we perform our fits by ignoring selected ranges of cells. We consider the cells to
be numbered from 0 to 255, and by that method of counting the fits we will now perform
will ignore cells 0 to 20 and cells 135 to 150 (a total of 37 cells).

Figure 3: Modified ACDC board 24, trigger 0 capture on channel
3. The horizontal axis shows the cell number, the vertical axis is in
ADC units with pedestals subtracted. Open circles show collected
data; the solid line shows the best fit. Gaps in the solid line show
where data was ignored due to artifacts. The residuals in the fit have
a standard deviation of 12.7 ADC units.

After performing the fit for equation 2, the fit for the first trigger is plotted in figure
3. The standard deviation of the residuals is consistent with Audrey’s result for a simple
uncalibrated sine fit.

Combining the 50 triggers, we get the set of estimates A = 416.3, B = 5.24, a period of
64.56 cells, and a set of phases φk. B is subtracted from the dataset as described above. The
period gives us the estimate ∆θ = (2π rad)/64.56 = 0.097 33 rad, which gives us a starting
point for the set of θj.

5 Correlating Residuals and Measured Voltage

We find the optimal fit for the parameter A in the following, assuming the θj and φk are
fixed as described above:
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σ2χ2 =
m−1∑
k=0

n−1∑
j=0

(Asin(θj + φk)− d′kj)2 (7)

and then plot the residuals as a function of the best fit ADC value; see figure 4.

Figure 4: For a sine function fit to all triggers, the residuals in
ADC units are individually plotted on the vertical axis and the fit
ADC values on the horizontal axis. There is a strong correlation. A
piecewise linear function consisting of 20 segments shows a smoothing
of the data.

There is a strong correlation seen, and it means one of two things. It could be that
there is a non-linear response to input voltages, or that we might be fitting to a curve with
the wrong shape. An additional fact we have noted, but not illustrated here, is that this
correlation curve changes depending on whether the sine wave is rising or falling. That would
not be the case if this was completely the result of non-linear response. So we will proceed
with the assumption that this correlation is due to an error in the shape of the wave form.

Given that the AWG is using a small number of sample points to generate the sine, it
will certainly produce some number of harmonics. Investigation shows that including more
than 7 harmonics does not significantly improve the fit, so we fit to 7 harmonics:

σ2χ2 =
m−1∑
k=0

n−1∑
j=0

[( 7∑
h=1

Ahsin(h(θj + φk))
)
− d′kj

]2
(8)
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Figure 5: These are the piecewise linear smoothings of the residuals
from a sine fit, a fit with 7 harmonics, and a periodic piecewise linear
fit of the waveform. The red line is the same as in figure 4.

Including 7 harmonics reduces the correlation greatly, as seen by comparing the red and
blue lines of figure 5. However, it is possible to do even better by fitting the waveform to
a periodic piecewise-linear function (PPLF). In theory, enough harmonics can match any
waveform, but it is not practical to spend the time to locate the specific harmonics that are
needed, and including all harmonics up to some fixed number is wasteful of our degrees of
freedom, as most of the harmonics have negligible amplitude. Using the PPLF is general
and easy.

The PPLF is built on periodic triangular waves defined as follows:

Pn(x) =


1− n

2π
x, if 0 ≤ x < 2π

n

0, if 2π
n
≤ x < 2π(1− 1

n
)

1− n
2π

(2π − x), if 2π(1− 1
n
) ≤ x < 2π

Pn(x (mod 2π)), otherwise

(9)
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Figure 6: The periodic triangular waveform P4(x). Using sums of
four displacements of these waves, we can construct any piecewise
linear periodic function made of four segments on [0, 2π].

Figure 6 illustrates an example of the function for the case n = 4. Linear combinations
of four translations of P4 can produce any PPLF having four equal-length line segments.

We find that 36 segments fit the waveform well, and the gray line in figure 5 shows
improvement over using the harmonics. Using up 36 degrees of freedom to describe the
waveform may sound wasteful, but we did start with 50× 256 = 12 800 dof, so we can afford
it.

The model fit that is being performed now consists of minimizing equation 10. The
calculation of the best fit is just as easy as the one for the harmonics since the fit parameters,
Yp, are simple coefficients of functions representing the triangular waveform with 36 different
phases.

σ2χ2 =
m−1∑
k=0

n−1∑
j=0

[( 35∑
p=0

YpP36(θj + φk − 2π
36
p)
)
− d′kj

]2
(10)
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Figure 7: The waveform represented by a periodic piecewise linear
function (PPLF) with 36 segments.

Figure 8: The difference between the piecewise linear function of
figure 7 and a true sine.

Figure 7 shows the waveform as fit by the PPLF. It looks like a sine wave at this scale,
but figure 8 shows the result of subtracting a true sine, and there are large differences. First,
the peaks and valleys of the actual wave are wider than a sine. Secondly, the shape of the
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peak is different from the shape of the valley. The difference ranges from about 15 ADC
units below the sine to 15 ADC units above. If our goal is to get the residual noise down to
just a few ADC units, this systematic error must be removed.

We cannot be certain how much of this correction is adjusting for an inaccurate sine
wave input, and how much is compensating for a global non-linear response to input voltage.
Using a pure sine input, or the same input with a few different pedestals could resolve this
issue, but we cannot investigate it with the data in hand. So what we have performed is a
combined adjustment for the waveform shape and non-linear response.

6 Correlating Residuals and Measured Voltage on a

per-Cell Basis

A non-linear response to input voltage exists and differs on a cell-by-cell basis.

(a) Cell 57 (b) Cell 119

Figure 9: Correlation of measured ADC value (horizontal axis) vs.
residuals (vertical axis) for two cells. Each plot shows 50 points, one
for each trigger.

Figure 9 shows two examples where there is a large curvature in the response to input
voltage, and shows that the curvature can be positive or negative, depending on the cell.
Each of these examples has a statistically significant departure from linearity; being nearly
8 standard deviations.

The curves in general, over all cells, show a sharp change in direction in the middle of the
range. Normally, when looking for non-linearity we would start with the quadratic behavior,
i.e. a constant curvature over the range. It turns out that a quadratic fit to the data under-
represents the sharpness of the curve near zero. If we had input data over a larger dynamic
range, say something approaching the 4096 ADC units that are possible, we could find hints
to the true shape of the response curve. But with a range of only 800 ADC units, the two
segment fit is the best we can find.

So we compute a simple two-segment model of the response for each cell. We call the
resulting functions λj(x), and then subtract this non-linear response from the observed data
points. This costs us another 3 degrees of freedom per cell.
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Now our model consists of:

σ2χ2 =
m−1∑
k=0

n−1∑
j=0

[( 35∑
p=0

YpP36(θj + φk − 2π
36
p)
)
− (d′kj − λj(d′kj))

]2
(11)

7 Correlating Residuals and Trigger Number

All of the triggers for a chosen channel and board state were collected in a single run lasting
no more than two minutes. In a stable environment, we would expect no change in behavior
between triggers, except for the random phase at which the software trigger occurred. In
particular, the distribution of residuals should not depend on the trigger number. To check
this, we plot all residuals versus trigger number for the unmodified ACDC board 24. See
figure 10.

Figure 10: All residuals, on the vertical scale in ADC units, versus
trigger number (0 to 49).

Surprisingly, there is a clear drift seen in the residuals even over this short period of time.
There were issues maintaining connections between the ACC and ACDC boards for more
than several minutes at a time, and Audrey speculated that it could be temperature related.
We could be seeing a drift in behavior due to temperature change.
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Figure 11: The means of the residuals plotted in figure 10, for the
unmodified ACDC board 24 with the linear power regulator. The
error bars represent the error on the mean.

Figure 11 shows that averages of the residuals that were scatter-plotted in figure 10. This
shows a cleaner view of the drift.

Figure 12 shows the averaged residuals, but for the modified ACDC board 24. There is
drift to be seen, but with different behavior than on the unmodified board.

Figure 12: The same plot as in figure 11, but for the ACDC board
with the switching power regulator. The error bars represent the error
on the mean.

It would take more research under controlled conditions to determine the cause of the
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drift per trigger. For our purposes, we have noted a statistically significant systematic error,
and we will remove it. This can be done by subtracting a trigger-dependent baseline Bk

from each data point.
The final version of our model is:

σ2χ2 =
m−1∑
k=0

n−1∑
j=0

[( 35∑
p=0

YpP36(θj + φk − 2π
36
p)
)
−
(
d′kj − λj(d′kj)−Bk

)]2
(12)

8 Correlation of Residuals with the Slope of the Fit

Finally, we will show how to improve the estimates of θj and φk.
Suppose that, for a given cell j, we compute the average residual, but only when the

slope of the fit curve is positive, and we find that the average data point lies above the fit
curve and therefore has a positive residual. And likewise suppose that when the slope is
negative we find that the average data point lies below the fit curve. This would be a case
of the residuals being correlated with the slope. This is illustrated in figure 13.

(a) Average data with a positive slope, show-
ing a positive residual

(b) Average data with a negative slope,
showing a negative residual

Figure 13: Schematic illustration showing a correlation between resid-
uals and slope.

Having this sort of correlation suggests that our guess at the location of the sample point,
θj, is not quite right. Consider figure 14 where, having observed the positive correlation, we
shift our θj to the right. The data points move closer to the fitted curves, and the residuals
are reduced.
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(a) Adjustment with positive slope (b) The same adjustment with negative slope

Figure 14: These would be the same data points shown in figure 13,
but we adjust our estimate of the time, θj, when they were measured.

Now, looking at real data, consider figure 15. It resembles the illustrated case in that
there is an obvious positive correlation of the slope of the fit curve and the residuals.

Figure 15: For cell 22 on the modified ACDC board 24, the residuals
are plotted on the vertical axis in ADC units, versus the slope of the
best fit waveform in ADC units per radian. Because the fitted wave
shape is piecewise linear, there are only 36 different slopes observed.
A‘trendline’ is shown with slope 0.0311.

Suppose that for cell j we have a set of slopes sk and residuals rk. If
∑

k rksk 6= 0 then
they have a correlation. If we change the time of sampling by an amount a, so that θj → θj+a,

15



then we would expect, to first order, that the residuals would change rk → rk− ask, and the
correlation would then be

∑
k(rk − ask)sk. To make the correlation vanish, we would set:

a =

∑
k rksk∑
k s

2
k

(13)

For the general case of fitting a line through the origin to a set of points (sk, rk), this
value of a is the slope of that fit line. Figure 15 shows a ‘trendline’ through the data and
displays the slope of the trendline. Note that the vertical units on the plot are ADC units
and the horizontal units are (ADC units)/rad. This means that the slope of a line on the
plot is measured in radians. The slope of the trendline is the first order adjustment we would
like to make to θj, and in this case, the adjustment is 0.0311(16) rad. The initial guess for
θ22 was 22×∆θ = 22× 0.097 33 rad = 2.1413 rad. The adjustment is nearly a third of ∆θ.

The uncertainty on a in equation 13 is given by:

δa =
σ√∑
k s

2
k

(14)

where σ is the uncertainty on each rk. This is how the uncertainty on the angle adjustment
is computed, but this is also the uncertainty on the adjusted angle. After this adjustment
we consider θ22 = 2.1724(16) rad.

In all of our model equations, from equation 7 to equation 12, the treatment of θj and
φk is symmetric. Because of that, the same technique used to update θj can also be used
to update φk. The only difference is that we will have more sample points in our slope-vs-
residual graph, since we get one sample per cell. Also, the initial guesses for phases were
very good, and they are only ever adjusted slightly.

9 A Summary of the Fitting Process

We have gone through all the steps of the process of finding a best fit model. We list them
here in summary as a sequence of steps to follow.

Note that we repeatedly compute a best fit to the shape of the waveform. Even though
this looks complicated, it is equivalent to solving a system of 36 linear equations in 36
variables, and takes only a millisecond of computation. (If we are instead using a 7-harmonic
sine, this is 7 linear equations in 7 variables, and so even faster.) Each time we change fit
parameters other than the shape coefficients, we recompute the best shape fit because it may
have changed a little.

1. Load the data for a particular channel from the .dat file. Subtract the pedestal data
that is in the header of that file.

2. Fit to equation 2 in a loop that tries various guesses of ∆θ over a range. The best ∆θ
gives us a first estimate of the θj. The other best-fit parameters, Ck, Dk, and Bk, give
estimates for φk and a baseline B. Subtract the B from all data points.

3. Initialize the per-cell linearity adjustments λj(x) to zero, and also the trigger-drift
baseline adjustments Bk to zero.
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4. Compute a best fit of the shape according to equation 12. Use the method of section
6 to adjust the λj(x) functions to remove per-cell nonlinearity correlations.

5. Compute a best fit of the shape according to equation 12. Now use the method of
section 7 and adjust the Bk values to remove trigger drift correlations.

6. Compute a best fit of the shape according to equation 12. Use the method of section
8 to adjust the θj estimates.

7. Compute a best fit of the shape according to equation 12. Use the method of section
8 to adjust the φk estimates.

8. Repeat steps 4 though 7 several times.

In practice, we go through the cycle of steps 10 times, and it is overkill. The system has
converged by cycle 4, and no improvement at all is seen after cycle 8.

The steps that bring the largest improvement to the fit, i.e. the largest reduction in
σ2χ2/ndof , are:

• The first shape fit after the initial sine fits.

• The correction for non-linear cell response.

• The improvement of the sample times θj.

10 The Residual Noise in Linear versus Switching Reg-

ulator Tests

As a follow up to Audrey Whitmer’s report on her tests performed in August of 2018, after
careful calibration of ACDC boards we can calculate the following noise values. Modified
boards supplied 1.2 V to the PSEC4 ASICs from a switching power regulator.

Each of these noise measurements is the result of calibration and analysis of 50 triggers.
On ACDC board 24 the fits are performed with 9938 degrees of freedom and data from
219 cells34 not affected by artifacts. On ACDC board 20 the fits are performed with 11 088
degrees of freedom and data from 244 cells56.

ACDC Card State Channel Noise (ADC units) Noise (mV)
24 unmodified 3 3.59 0.88
24 modified 3 3.21 0.78
20 unmodified 3 2.57 0.63
20 modified 3 2.63 0.64

3-range 21,135,151,256 (This is an input parameter to the fitting program; cells 21 to 134 are included in
the fit, as are cells 151 to 255.)

4datafiles: aw.4.24f.3.acdc.dat and aw.4.24.3.acdc.dat
5-range 12,256
6datafiles: aw.4.20.3.acdc.dat and aw.4.20m.3a.acdc.dat
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These results are consistent with previous measurements of noise in the PSEC4, and
show no significant difference between cards powered with a linear regulator and a switching
regulator.

11 Cell-to-Cell Time Step Variations

The fitting process that we have performed gives us a set of ‘time’ points, θj, with errors
determined by equation 14. Using the generated 100 MHz sine wave as our time standard
we can convert these into tj measured in conventional units. Note that the times we have
calculated are absolute times, measured from an arbitrary zero point, and not differences
between successive cell times. The typical error on the measured sampling time, for both the
modified and unmodified ACDC board 24, is 2.6 ps. If we do look at the differences between
successive sampling times, they average 154.8 ps with a standard deviation of 12.3 ps. The
smallest time step seen is 123 ps and it comes between cells 114 and 115. The largest time
step is 191 ps between cells 235 and 236.

In the paper of Oberla, et al., an average cell time step of 95.9 ps is reported with a
standard deviation of 12.1 ps. The difference between their and our average cell time steps
is explained by a 40 MHz system clock in their case, versus a 25 MHz clock in our case. The
agreement of the standard deviations could be more than coincidence. The per-transistor
variations in delay could be fixed times, rather than being frequency dependent.

The error on our measurement of a particular difference, say t22 − t21 would be
√

2 ×
2.6 ps = 3.6 ps. If this difference were measured with the zero-crossing method, with 1× 106

zero crossings, the statistical error would be (155 ps)
√

256/106 = 2.5 ps, which is compara-
ble. The method presented here required data collected from 50 triggers; data for 106 zero
crossings requires around 50 000 triggers.
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Figure 16: Values of (t′j+1 − t′j) − (tj+1 − tj) are plotted for odd j
values. The vertical axis is in picoseconds; the horizontal axis is the
cell number j.

To ensure that we are measuring physical properties of a PSEC4 chip, we need to measure
the tj more than once. We do not have any repeated measurements made under the same
conditions, but we do have measurements on the modified and unmodified ACDC board
24. We can make the assumption that the different power regulator will not change the cell
timing, and compare.

We can compute successive cell time differences tj+1 − tj for the unmodified board, and
do the same for the modified board, but call those t′j+1− t′j. These ought to be the same up
to statistical errors. Figure 16 shows a plot of (t′j+1 − t′j) − (tj+1 − tj) for odd values of j.
(Note that the error on, say, t31− t30 is correlated with that of t32− t31, so we avoid plotting
points with correlated errors.)

The mean of the differences plotted in figure 16 is −1.0 ps and the standard deviation is
is 4.8 ps. Since we are taking a difference of differences we expected a standard deviation of√

2× (3.6 ps) = 5.2 ps. This shows that our error estimate is not far off.
This accuracy was achieved with only 50 triggers. Using 100 triggers would reduce the

errors by a factor of
√

2. We can do even better than that by simply increasing the amplitude
of the input sine wave. The sk values in the denominator of equation 14 are slopes of the
sines, and these would increase linearly with the amplitude of the wave. Increasing the wave
(peak-to-peak) amplitude from our 0.2 V to a reasonable 0.6 V would cut the errors by a
factor of 3, so that the successive cell time differences could be measured to an accuracy of
1.2 ps with only 50 triggers.
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12 Code to do the Fitting

Code which automates this whole fitting process has been written in C#, and can be made
available on GitHub. It would not be difficult for someone to translate it into Python, if
they so desire. An external package, called ALGLIB7, was used for the linear algebra. Any
code that can solve a set of linear equations can be substituted.
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