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Abstract

This report reflects research completed during the University of Chicago 2018 REU program. In experiments
searching for neutrinoless double beta decay (0νββ-decay), it is necessary to differentiate two-electron 0νββ-
decay events from one-electron 8B solar neutrino background events. Detection of Cherenkov light emitted by
electrons can be used to reconstruct event topology by application of a spherical harmonics analysis, thereby
discriminating these two events. The spherical harmonics power spectrum for a definite-width Cherenkov ring is
derived. The spherical harmonics power spectrum for two off-center, on-axis Cherenkov rings is also calculated
to cross-check a result originally derived by Runyu Jiang. These calculations present ideal cases; however, in
liquid scintillator detectors, an abundance of scintillation light detection prevents Cherenkov light from being
distinguished. Cherenkov light, however, tends to arrive at detectors relatively early. I developed a python code
to read in simulated detection data and select early light in order to supress scintillation photons. I developed
another program to generate event displays, 3-dimensional figures with photon selections plotted. We conclude
the selection method does allow for the suppression of scintillation light, decreasing the ratio of scintillation to
Cherenkov photons.
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1. Introduction

In 1937, it was suggested the neutrino may be a Majorana particle, a fermion which is its own antiparticle
[1]. Observing neutrinoless double beta decay would prove the neutrino is a Majorana particle [2], providing
us with an understanding beyond the Standard Model. In an ordinary double beta decay, two neutrons are
converted into two protons, two electrons, and two antineutrinos. In 0νββ-decay, the two antineutrinos undergo
virtual neutrino exchange and only two protons and two electrons are emitted. The energies of the electrons
can be used to differentiate an ordinary double beta decay from 0νββ-decay. In the latter, the energy of the
electrons totals 2.5 MeV. In an ordinary double beta decay, electrons have a total energy below this, since
emitted neutrinos carry away energy.

We simulate 0νββ-decay events uniformly distributed within a 3 m radius in a spherical liquid scintillator de-
tector of radius 6.5 m with 100 ps resolution. The simulation employs a scintillator consisting of 82% decane and
18% pseudocumene (1,2,4-trimethylbenzene) by volume and 2.7 g/liter of the fluor PPO (2,5-diphenyloxazole),
doped with 130Te. Although current detectors cannot yet achieve this level of time resolution, the simulated
detector has scintillation characteristics and size similar to SNO+ and KamLAND-Zen. THEIA, under devel-
opment, is expected to have 100 ps resolution.

The relativistic electrons produced in the decay emit Cherenkov radiation and lose energy through scintillator
ionization until the electron energy drops below 0.16 MeV, the Cherenkov threshold. Neglecting scattering
and absorption by liquid scintillator, Cherenkov radiation is expected to form a fuzzy ring-like pattern on the
detector, which can be used to reconstruct event topology. In reality, the scattering by liquid scintillator produces
a Cherenkov detection pattern that is only faintly ring-like. Furthermore, since most Cherenkov radiation is
absorbed by scintillators, only the red component of Cherenkov light travels through the medium, undisturbed.
In simulations, this, along with the quantum efficiency of the detector, yields only approximately 40 Cherenkov
photons to construct the detection pattern.

After absorbing Cherenkov photons, the scintillators radiate scintillation light isotropically. The primary
mechanism, however, for the emission of scintillation light, is emitted electrons exciting scintillators to higher
energy states. The scintillation light detection information, along with the scintillator’s emission spectrum, is
very useful in determining the total electron energy. Approximately 2700 scintillation photons are detected,
much more than the 40 Cherenkov. We therefore propose an approach to suppress scintillation light.

2. Photon Selection Technique

2.1. Grid Segmentation

Due to its longer wavelength, Cherenkov light travels faster than scintillation light in liquid scintillator. The
emission of scintillation light is also delayed by the time taken for the scintillator to ionize. Scintillation light
will therefore generally arrive later than Cherenkov light. By selecting only light that arrives at the detector
early, the amount of scintillation light collected can be minimized. We must accept only locally early light,
rather than globally early. The reason being that one portion of the Cherenkov ring may hit the detector at
an earlier time than another, since events occur off-center. We therefore divide the spherical surface into equal
area grids to act as the localized areas. Equal area grids remove detection bias for any particular grid. The
φ-component of the detector is divided into nφ equal segments. The cos θ-component is also divided into nθ
equal segments. A combination of nθ and nφ is referred to as a grid segmentation of (nθ, nφ). In total, there
are nθxnφ grids in one grid segmentation.

2.2. Selection Rules and Metrics

Two different photon selection rules are explored. In the first method, dubbed PPG (photons per grid), the
first nphot to hit each grid are selected. We consider values in the range nphot ∈ [3, 4, 5]. The second method
incorporates a relative time cut within each grid. Consider one particular grid; the first photon detected by that
grid corresponds to a relative time of 0ns. Any photons to hit that grid within a time tcut after the first photon
are selected, where tcut is defined as the relative time cut. We of course also include the very first photon in
our selection. This is done for all grids. We consider the range tcut ∈ [1, 2, 3], in units of nanoseconds.

We apply various combinations of grid segmentations and selection rules, collectively called parameters, in
order to maximize the amount of Cherenkov photons selected and minimize the amount of scintillation photons.
To measure the effectiveness of each parameter combination, two metrics are applied. The first determines the
probability of a parameter combination yielding a ratio of

RSD =
photon type selected

photon type detected
, (1)
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where photon type can be either Cherenkov or scintillation. A ratio of RSD = 1 for Cherenkov photons is ideal,
since this implies all Cherenkov light is selected. A ratio of RSD = 0 for scintillation photons is also ideal, since
no scintillation photons are selected. Fig. 1 and Fig. 2 show these ratio probabilities with various parameter
combinations. Each subplot is made by calculating RSD for each photon type for each of 1000 simulated events,
rounding up to the nearest half-integer, and creating a distribution using all 1000 values. We normalize such
that the bar height ranges from [0,1], giving the probability of measuring each RSD.

Since the first metric gives no direct information on the proportion of Cherenkov to scintillation, we develop
a second metric which determines the probability of a parameter combination yielding a ratio of

RSC =
scintillation photons selected

Cherenkov photons selected
. (2)

This ratio should ideally be low, since we aim to minimize scintillation selected and maximize Cherenkov selected.
The subplots in Fig. 3 and Fig. 4 show RSC values for various parameter combinations. These plots are also
made by creating a distribution of RSC , rounded to the nearest half-integer, for 1000 events and normalizing.

Fig. 1: Probability distribution of ratio of photon type selected to photon type detected, RSD, using the PPG
method for events uniformly distributed within a 3 m radius. Theta bin and phi bin correspond to nθ and nφ

values, respectively. PPG gives the nphot value.
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Fig. 2: Probability distribution of ratio of photon type selected to photon type detected, RSD, using the
relative time cut method for events uniformly distributed within a 3 m radius. Theta bin and phi bin

correspond to nθ and nφ values, respectively. TC gives the tcut value in nanoseconds.
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Fig. 3: Probability distribution of ratio of scintillation photons selected to Cherenkov photons selected, RSC ,
using the PPG method for events uniformly distributed within a 3 m radius. Theta bin and phi bin

correspond to nθ and nφ values, respectively. PPG gives the nphot value.
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Fig. 4: Probability distribution of ratio of scintillation photons selected to Cherenkov photons selected, RSC ,
using the relative time cut method for events uniformly distributed within a 3 m radius. Theta bin and phi

bin correspond to nθ and nφ values, respectively. TC gives the tcut value in nanoseconds.
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Fig. 5: Event display for a 130Te 0νββ-decay showing all photons detected [left]. Event display for the same
130Te 0νββ-decay after applying a (5,10) grid segmentation and a PPG selection rule with nphot = 3 [right].

Arrows represent direction of two electrons.

3. Discussion

Finer grid segmentations, with larger values of nθ and nφ, increase RSD and RSC . Greater values of nphot
and tcut for the PPG and relative time cut selection rules, respectively, also increase these ratios. In Fig. 1 and
Fig. 2, rightward shifts in RSD for scintillation light are more consequential than rightward shifts in RSD for
Cherenkov light, due to the greater amount of scintillation light detected. Therefore, we place higher priority
on keeping RSD low for scintillation light, rather than ensuring RSD is high for Cherenkov. Due to saturation
of RSD of Cherenkov at a grid segmentation of (15,30) at an nphot = 5 and tcut = 3 ns, parameter combinations
of values greater than this are not recommended.

For coarse segmentations, with small values of nθ and nφ, it is inconclusive whether the PPG or the relative
time cut method works best. However, for finer segmentations, the relative time cut method may yield higher
RSD for Cherenkov and lower RSD for scintillation light. For example, for a grid segmentation of (15,30), a
tcut = 2 ns yields a higher probability of measuring RSD for Cherenkov between 0.95 and 1 (see Fig. 2) than
does an nphot = 3 (see Fig. 1). For this same grid segmentation, all RSD values for scintillation light for a
tcut = 2 ns fall at or below 0.35, whereas the RSD value for nphot = 3 have an above 80% probability of lying
above 0.4. It can also be seen in Fig. 3 and Fig. 4 that, for a grid segmentation of (15, 30), the tcut = 2 ns plot
is shifted leftwards in comparison to the nphot = 3 plot. This effect may be prevalent for finer segmentations
because Cherenkov photons may arrive in localized clusters, with small time separations. Therefore, a small
relative time cut and small grid area may be effective.

A grid segmentation of (5,10) is regarded as the most optimal since it keeps RSD for scintillation light at
or below 0.15 while keeping the mode of RSD of Cherenkov light above RSD = 0.5 for all but the tcut = 3
ns selection rule. Segmentations coarser than (5,10) are not recommended since the probability of supressing
a Cherenkov photon increases as the number of grid areas decreases. The reason for this is the RSC for the
(5,10) segmentation is already low, meaning that Cherenkov photons already account for much of the selected
photons, so much of the suppressed photons will be Cherenkov. Therefore, supressing this group of selected
photons further will drive a leftward shift of the RSD distribution for Cherenkov in Fig. 1 and Fig. 2.
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4. Conclusion

For events evenly distributed within a 3 m radius, Cherenkov photons can be selected among scintillation
photons in liquid scintillator detectors by applying a grid segmentation technique where only locally early light
is selected. A grid segmentation of (5,10) can supress 85% of scintillation photons detected while generally
keeping above 50% of Cherenkov photons detected when appropriate selection rules developed in this work are
applied. Grid segmentations coarser than (5,10) are not recommended due to a higher probability of supressing
Cherenkov photons. For finer segmentations, the relative time cut selection method may have an advantage
over the PPG selection method due to the assumed tendency of Cherenkov photons to arrive in clusters.

Appendix A. Spherical Harmonics Power Spectrum

Appendix A.1. Derivation of Spherical Harmonics Power Spectrum

Cherenkov light can be used to determine differences in event topology of 0νββ-decay and 8B solar neutrino
background events by describing a function of discrete photon hits on the detector as a sum of spherical
harmonics. Eventually, an advanced machine learning-based pattern recognition algorithm will be used to
recognize these differences. We rederive the spherical harmonics power spectrum (Eq. A.5) defined in Ref. [3],
where this spherical harmonics analysis is introduced. We define a function f(θ, φ) to describe the coordinates
of all photon hits on the detector. It can be expressed as a sum of tesseral spherical harmonics [4],

f(θ, φ) =
∑
l,m

fl,mYl,m(θ, φ). (A.1)

The function is nonzero at points where a photon hits, and zero elsewhere. This behavior can be described
by attributing a dirac delta function to each hit. For a collection of N detected photons, the function becomes
a sum of N delta functions, with an overall normalization factor, A.

f(θ, φ) =
A

sin θ

N∑
i=1

δ(θ − θi)δ(φ− φi) (A.2)

Exploiting dirac notation, the projection factor, fl,m, is given by

fl,m =
〈
Yl,m(θ, φ)|f(θ, φ)

〉
. (A.3)

Since f(θ, φ) is a normalized function, the sum of the moduli squared of the projection factors is unity.

∑
l

l∑
m=−l

|fl,m|2 = 1 (A.4)

Now we define the spherical harmonics power spectrum as

Sl ≡
l∑

m=−l

|fl,m|2. (A.5)
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Appendix A.2. Power Spectrum for Continuous Cherenkov Rings of Definite Width

Fig. 6: A Cherenkov ring of definite width on a spherical detector, centered along the z-axis.

This result was derived independently by making use of Runyu Jiang’s contributions to the spherical ha-
monics analysis technique [5]. We consider an idealized case: the detection of a continuous Cherenkov ring of
definite width. We are free to center the ring along the z-axis. We assume no Cherenkov radiation was lost to
scintillators, so the ring is continuous within θ ∈ [θa, θb]. For a continuous ring, N →∞, and we may consider
the sum as a set of integrals.

f(θ, φ) =
A

sin θ

N∑
i=1

δ(θ − θi)δ(φ− φi) (A.6)

lim
N→∞

f(θ, φ) =
A

sin θ

∫ θb

θa

δ(θ − θ′)dθ′
∫ 2π

0

δ(φ− φ′)dφ′ (A.7)

f(θ) =
A

sin θ

∫ θb

θa

δ(θ − θ′)dθ′ (A.8)

Upon normalizing f(θ),

f(θ) =
1

2π(θb − θa) sin θ

∫ θb

θa

δ(θ − θ′)dθ′. (A.9)

After calculation, the projection factors vanish for m 6= 0 and the power spectrum is completely determined by
the fl,0 term

Sl =
2l + 1

4π(θb − θa)2

[ ∫ θb

θa

Pl(cos θ)dθ
]2
, (A.10)

where Pl(cos θ) is the Legendre polynomial.
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Appendix A.3. Derivation of Power Spectrum for Off-Center, On-Axis Events

Fig. 7: Two infinitely thin Cherenkov rings centered along the z-axis on opposite hemispheres.

This result was first derived by Runyu Jiang [5]. He later posed the problem to me as a mathematical exercise
and I arrived at a solution indepedently, of course by making use of his lessons on the technique. We consider
the ideal case of two infinitely thin Cherenkov rings centered about the z-axis. The total f(θ, φ) function is the
sum of the individual functions describing each ring. Letting θ = θ1 describe the first ring, the f1(θ, φ) function
is

f1(θ, φ) =
A

sin θ
δ(θ − θ1). (A.11)

Doing the same for the second ring, we construct f(θ, φ). After normalization

f(θ) =
1

4π sin θ

[
δ(θ − θ1) + δ(θ − θ2)

]
. (A.12)

Using this function to calculate the projection factors, we find that fl,m vanishes for m 6= 0. The power spectrum
is again completely determiend by fl,0:

Sl =
2l + 1

16π

∣∣∣Pl(cos θ1) + Pl(cos θ2)
∣∣∣2. (A.13)
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