Event Reconstruction Techniques for a (water-based) Liquid Scintillator Detector

> Andrey Elagin University of Chicago

Outline:

- Motivation: next generation of (water-based) liquid scintillator detectors
- Cherenkov / scintillation light separation
- Optical tracking using fast timing
- Event reconstruction algorithms

TAUP2017, Sudbury, July 26, 2017

Motivation

Large scintillator detectors and large water-Cherenkov detectors have been very effective in measuring neutrino properties

A concept drawing of the THEIA detector

- Physics Program of THEIA:
 - Neutrinoless double beta decay
 - Solar neutrinos
 - Geo-neutrinos
 - Supernova burst neutrinos & DSNB
 - Nucleon decay
 - Long-baseline physics (mass hierarchy, CP-violation)
 - Unexpected surprises

For more on THEIA detector see talk by Leon Pickard tomorrow

Ability to extract the most information out of each event is crucial -> need dedicated reconstruction algorithms

Cherenkov vs Scintillation Light

Cherenkov

- Prompt emission
- Directional for each charged track segment
- Higher energy threshold
- Less abundant compared to scintillation light
- Conventionally used for particle ID, vertexing and "coarse" energy measurements

Scintillation

- Slow emission
- Isotropic for each charged track segment
- Very low energy threshold
- Abundant: usually completely overshadow Cherenkov light
- Conventionally used for vertexing and "precision" energy measurements

Combining the two should make for a very powerful detector

Very active field: JINST 7 (2012) P07010; PRD87 (2013) 071301; JINST 9 (2014) 06012; arXiv:1409.5864; NIMA 830 (2016) 303; NIMA 849 (2017) 102; PRC95 (2017) 055801; arXiv:1610.02011 Current status: need fast timing and slow scintillators

A Note on Speed of Light

- Light travels one foot in 1 ns (in vacuum)
- 1 ns = 1000 ps
- In 1 picosecond light travels only 300 microns
- Light is slow in picosecond domain -> one can try "drift" photons, much like electrons in a TPC
- Speed of light in matter depends on the wavelength e.g. in a typical scintillator:

v(370 nm) = 0.191 m/ns

~2 ns difference over 6.5m distance (that's a lot of picoseconds)

Large-Area Picosecond Photo Detectors (LAPPD) are being developed "Drifting" photons is one of the key applications of LAPPD

Optical Time Projection Chamber

- Like a TPC but drifts photons instead of electrons
- Exploits precise location and time for each detected photon
- Would allow track /vertex reconstruction in large liquid counters

Suggestion to use LAPPD's for DUSEL and the name (OTPC) due to Howard Nicholson

- It doesn't have to be water (use prompt Cherenkov light that arrives early)
- In fact, for long tracks optical tracking should also work using just scintillation

Eric Oberla's Optical TPC

Eric Oberla's Ph.D thesis

Beam's Eye View of the OTPC

OTPC at Fermilab Test Beam

Eric Oberla's Ph.D thesis

OTPC Results

- 60 mrad angular resolution over a lever arm of 40cm 1.5 cm spatial resolution (radiation length of H2O is 40cm) See 780 psec separation of direct and mirror-reflected light More details in Nucl. Instr. Meth. A814, pp19-32 April 1 (2016)

Can We See Event Topology in a LS Detector?

Simulation of a $0\nu\beta\beta$ event (selected event with large angle between electrons)

10

Early Light Topology

Idealized event displays: no multiple scattering, all light after QE=30% cut

Early Light Topology

Realistic event displays: early PEs only, KamLAND PMTs QE: Che~12%, Sci~23%

2-Track vs 1-Track Event Topology

• Spherical harmonics analysis is rather simple, but it doesn't use all available information

 Advanced machine learning techniques looking at 4-vectors of each photon hit should work better (probably makes more sense with a little more progress on the instrumentation front)

Topology reconstruction of MeV events could help against other backgrounds in searches for $0\nu\beta\beta$ -decay (e.g., ${}^{10}C$, 2.6MeV gammas)

3D Optical Tracking

Need:

- One reference point (space and time)
- Single photon hit times

Reconstruction algorithms work with Cherenkov or scintillation light

- B. Wonsak et al. Original motivation: LENA scintillator detector
- M. Wetstein et al. Original motivation: water-Cherenkov LBNE detector

3D Optical Tracking using Scintillation

B. Wonsak et al.

For each photon hit:

- Time defines drop-like surface
- Gets smeared with time profile (scintillation & PMT-timing)
- Weighted due to spatial constraints (acceptance, optical properties, light concentrator, ...)

 \rightarrow spatial p.d.f. for photon emission points

3D Optical Tracking using Scintillation

1.0 0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 $\times 10^{3}$

۲ [cm]

1.0

0.5

0.0

-0.5

-1.0

-0.5

0.0

0.5

1.0 X [cm]

-1.0

B. Wonsak et al.

- Divide result by local detection efficiency → Number density of emitted photons
- Use knowledge that all signals belong to same topology to 'connect' their information

 \rightarrow Use prior results to re-evaluate p.d.f. of each signal

Access to dE/dx

16

3D Optical Tracking using Scintillation

Current Status (slide by S. Lorenz)

y [cm]

400

200

-200

400

Figure court

-400

200

200

400

600

Universität Hambu

- Early version tested with real Borexino data
- Developed C++ reconstruction framework
 - LENA implemented
 - > JUNO implementation ongoing (more complicated optical model)
 - Borexino implementation ongoing (real data!)
- First performance evaluation with fully-contained MC muon events in LENA

Mainz, 5th October 2016

FroST - Topical Workshop for THEIA - Sebastian Lorenz

Summary

- Light is slow if measured in picoseconds
- Lots of information can be recovered by 'drifting' photons to a highly segmented photo-detectors
- Using Cherenkov and scintillation light in the same detector is a very attractive option
- New algorithms are being developed for detailed event reconstruction covering MeV to GeV energy range

Back-up

1.4

A Note on Mirrors and the Optical TPC

"Adding psec-resolution changes the space in which considerations of Liouville's Theorem operates from 3-dimensional to 4dimensional. In analogy with accelerator physics, we can exchange transverse emittance to longitudinal emittance.

There may be interesting and clever ways to exploit this in large water/scint Cherenkov counters" -H. Frisch

Homage to T. Ypsilantis

Electron TPC and the Optical TPC

- Drift electrons at constant velocity (E field)
- Limit diffusion with B field
- Charged particles create ionization along track
- Collect position and time at end of drift
- Single path for electrons

- Drift photons at constant velocity
- Limit dispersion by various stratagems (inc. near light)
- Charged particles create Cherenkov light along track
- Collect position and time at end of drift
- Photons can be reflected to increase sensitive area using path length to identify bounce

OTPC:

- Current LAPPD microstrip readout gives 700 micron by 700 micron resolution for a 90cm x 20cm anode with cheap CMOS readout- gives 2x10⁶ pixels/m²
- Resolution in 3rd dimension set by timing: 50 psec = $\frac{3}{4}$ "; 1 psec = 300 microns
- Longitudinal information allows unambiguous use of mirrors

$0\nu\beta\beta$ vs ^{8}B

For details see NIM A849 (2017) 102

Other backgrounds (gammas, alphas, ¹⁰C, etc) also have distinct topologies Event reconstruction in liquid scintillator would enable new opportunities

$0\nu\beta\beta$ -decay vs ^{10}C

two-track vs a "complicated" topology

- ¹⁰C final state consist of a positron and gamma (e+ also gives 2x0.511MeV gammas after loosing energy to scintillation)
- Positron has lower kinetic energy than $0\nu\beta\beta$ electrons
- Positron scintillates over shorter distance from primary vertex

24

Gammas can travel far from the primary vertex
¹⁰C background can be large at a shallow detector depth

OTPC Optics – direct light

The time projection of the direct Cherenkov photons on the OTPC zaxis is a measure of the Cherenkov angle (β) and the particle angle with respect to the OTPC longitudinal axis

$$\Delta t_{\gamma_{21}} = t_o \left(1 - \frac{\beta c}{\langle v_{group} \rangle} \tan \theta_i\right)$$

$$\Delta z_{\gamma_{21}} = \beta \ c \ t_o \ \cos \theta_i$$

$$\frac{dt}{dz} \approx \frac{1}{\beta c} - \frac{\tan \theta_i}{< v_{group} >}$$

28-7-2015

OTPC Optics - direct + reflected light

OTPC Photodetector Module (PM)

- MCP-PMT mounted to anode card . with low-temperature Ag epoxy
- Terminate one end of micro-strip, • other end open (high-impedance):

(commercial) MCP-PMT

5.1 cm

PHOTONIS XP85022

Expressions for the position and time-of-arrival of the detected photon

$$x = v_{prop} \frac{t_2 - t_1}{2} - \frac{D + 2C_1}{2}$$
$$t_0 = \frac{t_2 + t_1}{2} - \frac{1}{v_{prop}} (D + C_2 + C_1)$$

28-7-2015

thesis defense

####