
Version 1
August 15, 2017

Documentation of Firmware Functionality

Horatio Li
The University of Chicago

Abstract

This documentation is about how the software commands are processed in
the firmware level of ACC and ACDC boards. The ACC is interfaced to the
computer via USB, which sends command words (C++ USB instructions) to
the USB module inside ACC for instructions. These instructions are designed
to serve such functions as sending triggers, aligning ACC and ACDC boards,
resetting various signals, and transmitting data between boards.

In the ACC firmware, this is done by assigning different hexadecimal values
to a signal internal to the USB module called USB INSTRUCTION (specifi-
cally, USB INSTRUCTION is a signal consisting of 32 bits, and the hex values
are assigned to the 16th through 19th bits of the 32 bit-field). Essentially, this
signal carries information from the C++ command word and then, with dif-
ferent hex values, triggers a set of different signals to send out information to
other modules in the ACC or to the ACDC. In total, there are five hexadeci-
mal values of the 16th to 19th bits of USB INSTRUCTION that correspond
to specific functionalities.

Hexadecimal Values Corresponding Binary Corresponding Functionalities

E 1110 Software Trigger

D 1101 Align LVDS

C 1100 CC Read Mode

B 1011 Prepare Sync

4 100 Hardware Reset

The following sections are explanations for how each of the above function-
alities work in the firmware level. Each of them contains a signal chart indicat-
ing the following information about the relevant signals 1) location (where the
signals are involved in the firmware, this usually consists in module name +
line number); 2) description and functionality (which includes firstly a detailed
trace of where the signal goes and comes from, and secondly a summary of the
general role the signal functions in the corresponding functionality).

1 Software Trigger

The following is the bit-field range of USB INSTRUCTION for this functionality:

1



Bit Range Name Description
19-16 0xE Command marker
6-4 SOFT TRIG BIN
3-0 SOFT TRIG MASK

The following is the ”destination” part of the firmware:

when x"E" =>

SYNC_TRIG <= ’1’;

SOFT_TRIG <= ’1’;

SOFT_TRIG_MASK (3 downto 0) <= USB_INSTRUCTION (3

↪→ downto 0);

SOFT_TRIG_MASK <= (others=>’1’); --trigger

↪→ every AC/DC

SOFT_TRIG_BIN <= USB_INSTRUCTION (6 downto 4);

if delay > 8 then

delay := 0;

state <= st1_WAIT;

else

delay := delay + 1;

end if;

1.1 Introduction

This functionality starts with a synchronization process in the USB module, which
is enabled by turning a signal called cc only instruct rdy high. The sync process es-
sentially prepares the software trigger related signals (SOFT TRIG MASK, SOFT TRIG BIN)
to send out to other modules.

012345678910111213141516171819202122232425262728293031

0xE set binbinSOFT TRIG MASK

Figure 1: Command 0xE bit fields

2



1.2 In TriggerAndTime Module

The only two output signals from the USB module are SOFT TRIG MASK and
SOFT TRIG BIN. The first serves as a mask which determines which ACDC board(s)
to send dedicated trigger line from the ACC main module (which will be discussed
later in this documentation); the second functions to enable SOFT TRIG MASK to
be sent to ACC main and to enable a system clock counting process.

2 CC Read Mode

2.1 Introduction and bit-field range

The CC read mode functionality, initialized in the USB interface by software com-
mand words, sends instructions / signals for two major uses: 1) instructions directly
related to read cc mode (CC INSTRUCTION) gets sent to the ACCmain module and
then eventually to various places in ACDC boards; 2) signals related to triggers that
get sent to triggerAndTime and through the dedicated trigger line (xDCout (1)) to
ACDC boards. In the following documentation, the first section describes the former
while the second section describes the latter.

The following is the bit-field range of USB INSTRUCTION in this functionality:

Bit Range Name Description
19-16 0xC Command marker
14-12 SET TRIG DELAY
11-5 TRIG DELAY
3 TRIG MODE
2-0 CC READ MODE

3



2.2 Initialization: Synching CC instruction signals inside
USBWrapper module

The CC read mode functionality is processed when we enter (at the software
level) 0xC (binary 1100) to the 19-16 bits of signal USB INSTRUCTION. In the
USBWrapper module (where the software command enters the ACC), we initialize
this functionality by

1) setting a signal called CC INSTRUCT RDY high and

2) mapping the value of USB INSTRUCTION to CC INSTRUCTION (see line
815 819 USBWrapperACC).

The first result enables two signals to be synchronized and thus prepared to be
sent to other modules for further purposes related to cc read mode functionality.
The result of this synchronization process is the following: 1) CC INSTRUCTION is
sent to a port called xInstruction [31..0] in ACCmain module; 2) INSTRUCT MASK
(which determines which ACDC board(s) to send instruction) is sent to a port called
xfe mask[7..0] in ACCmain module; 3) a signal called instruction rdy is turned on,
which sets xInstruct Rdy in ACCmain module high.

The second result basically enables software commands (USB INSTRUCTION) to
set values to all the digits of CC INSTRUCTION.

2.3 Signals that have gone into ACC main from usbWrap-
perACC

• xInstruct ready

• xInstruction[31..0]

• xfe mask[7..0]

2.3.1 Functionality of xInstruct ready

Instruct Ry is mapped to a signal called xCC INSTRUCT RDY which functions
to enable instruction to be ready to send to the desired front-end board. In the com-

4



ponent transceivers, we are interested in sending instruction to the i-th ACDC board
by masking via xDC MASK which is mapped to the i-th digit of xfe mask.

In the transceivers component, this is done by process (line 258) in which 32
bit word are sent 8 bits at a time. It firstly sends STARTWORD 8a and START-
WORD 8b via GOOD DATA. Then it sends xCC INSTRUCTION (which are CC-
related instruction that is sent from the USBwrapper) to DCout (0).

2.3.2 Functionality of xInstruction[31..0]

xInstruction is sent to xCC instruction in a component called transceivers (men-
tioned above). In that component, as described in the above section, it gets sent 8
bit at a time by a process in line 258 (in which a signal called GOOD DATA serves as
an intermediate link that carries xCC instruction to TX DATA in a sub-component
called lvds transceiver, in which ). Eventually these signals go to lvds com as
xRX LVDS DATA.

2.3.3 Functionality of xfe mask[7..0]

xfe mask goes to xDC mask in the TRANSCEIVER component. It shows up in the
process mentioned in the descriptions of the two signals above, in which it functions
to enable the data-processing to the selected desired front-end boards.

2.3.4 Summary of 2.3

In general, the first signal xInstruct Rdy serves as a preliminary condition under
which the second signal, xInstruction, can be sent to the desired ACDC boards
selected by the third signal xfe mask.

Note This part of the functionality CC Read Mode is similar to software trigger
in that it also involves a process of selecting the desired front-end ACDC boards
and then send data (instructions) to it. What distinguishes this functionality from
the other is that this functionality processed xDCout (0) while the software trigger
functionality processed xDCout [2..1]. While the 2 and 1 digit of xDCout take care of

5



aligning the ACC with ACDC AND triggering ACDC from ACC, digit 0 of xDCout
sends out lvds data received by the ACDC.

2.4 In ACDC: Instructions from ACC via LVDS

General Description The signal xDCout [0] is mapped to a port on module
lvds com called xRX LVDS DATA, which is linked eventually to an internal signal
called RX DATA, whose functionality is shown in 2 processes: the first one starting
on line 181 and the second starting on line 246 (both in module lvds com).

2.4.1 Process 181: Alignment & Readout

In this process, the preliminary requirement involves xALIGN ACTIVE=1, which
we have from align lvds functionality (NOTE: in align lvds functionality, signal xtrig
is mapped to xDCout (1), which goes to xalign active in ACDC lvds com). The
purpose of this process is to align RX DATA with a signal called ALIGN WORD 8,
which is a 8-bit signal whose concatenation with itself is assigned to TX DATA
(i.e. TX DATA = ALIGN WORD 8 & ALIGN WORD 8). In other words, this
process makes sure that RX DATA is aligned with some external threshold or stan-
dard (ALIGN WORD). After this process, TX DATA (which is the concatenation of
RX DATA with itself) is transmitted to an output port called xTX LVDS DATA[1..0]
which is sent to the ACC main in xDCin [1..0] for readout.

After sent back to ACC main: (xDCin [1..0]) The signal xDCin [1..0] is
mapped to a port in ACC main called xRX LVDS DATA, which is eventually mapped
to an internal signal called RX DATA in the transceivers component within ACC main.

Inside the transceivers component, RX DATA[15..0] is divided into two parts
(which essentially correspond to rx serdes(1) and rx serdes(0), each undergoing a
check for alignment process (note: this check for alignment process occurs previously
with TX DATA as well: see process 181 above). Then, RX DATA as a whole is
mapped to an internal signal called CHECK RX DATA. CHECK RX DATA enables
either START WRITE or STOP WRITE (which will be explained in the following).
This means that the data we receive from the ACDC boards (i.e. RX DATA) enables
us to store it into RAM and eventually for USB readout:

6



If START WRITE is high (which means we are in write mode), we store RX DATA
to RX DATA TO RAM. In this case, we store RX DATA to a signal called xRxData
in ACCmain, then is sent to a signal called xADC[7..0][15..0] in the USB. Then, in
the USB it gets selected by FPGA DATA (for specific procedure: see packetUSB.vhd
line178) and then sent out by a external port in USBwrapper called FD to the
computer.

2.4.2 Process 246: passing instructions to decode instruct module

When we finish the previous process, we have ALIGN DONE as the state of the
process, under which ALIGN SUCCESS is high. Given ALIGN SUCCESS = 1, if
RX DATA is aligned with a threshold (similar to the ”check for alignment” process
in 181, as shown above), we assign RX DATA to CC INSTRUCTION by concate-
nating RX DATA 4 times. The result of this process, eventually, is that: 1.we set
the four times concatenation of RX DATA to CC INSTRUCTION, which is again
mapped to a signal called CC INSTRUCTION FULL (this eventually goes to xIN-
STRUCT WORD[31..0] in decode instruct); 2. we set INSTRUCT READY high
(which turns xINSTRUCT READY high, and this goes to xINSTRUCT FLAG in
module decode instruct)

2.4.3 Various Instructions given by xINSTRUCT WORD in decode instruct

NOTE: this process gives out 11 possible instructions to ACDC xIN-
STRUCT WORD goes to process 238 in decode instruct which is initiated by xALIGN SUCCESS
= 1, a condition satisfied by process 181 above. Then, a second initiation is set by
xINSTRUCT FLAG (which comes from process 246 above) going high. This second
initiation then allows the assignment of xINSTRUCT WORD to various other inter-
nal signals. The process then starts with different cases of INSTRUCTION:

Instructions Signal Used Output Signals Where output goes & functionality

set dll vdd INSTRUCT PSEC MASK(j) when high, SET DLL VDD(j) (15..0) ¡= 0x0&INSTRUCT VALUE 787
2 7 78 5415
3 545 778 7507
4 545 18744 7560
5 88 788 6344

7



2.5 Signals that have gone into triggerAndTime from usb-
WrapperACC

Given the condition that bit 4 of USB INSTRUCTION is high, we assign values to
the following signals by mapping them to corresponding digits in USB INSTRUCTION:
TRIG MODE, TRIG DELY(6..0), SET TRIG SOURCE(2..0). Respectively, they
get mapped to the following signals in triggerAndTime module:

• xMODE: it becomes the ninth bit in the array xBIN COUNT. It functions
similarly to a reset signal: if xMODE is zero, some trigger-related signals like
LATCHED TRIG goes to zero.

• xTRIG DELAY: Only appears in line 275 which is commented out. This
therefore seems useless.

• xTRIG SOURCE[2..0]: INTERNAL TRIGGER (an internal signal of trig-
gerAndTime module, which is discussed below) can be set to several different
things based on xTRIG SOURCE.

2.5.1 Functionality of these signals

Setting LATCHED TRIG high: xMODE and xTRIG SOURCE converge at a
process in line 219 in which an internal signal called LATCED TRIG is set high.
The two signals we are interested in are involved in the following way: if 1) xMODE
is set high, 2) xTRIG SOURCE(0) is low (so that a signal called USE BEAM ON
is low: see line 208), and 3) an external signal called xEXT TRIG VALID is high
(explained below), then LATCHED TRIG is high.

(NOTE: xEXT TRIG VALID is set high by a signal called xtrig valid in usbWrap-
perACC. xtrig valid should be set high by trig valid cc only, which is set high by the
cc read mode functionality. Yet Oberla seems to comment this out so we are not sure
how xEXT TRIG VALID can be set high)

What LATCHED TRIG does: The specific functionality of LATCHED TRIG
seems unclear now. In triggerAndTime module, LATCHED TRIG turned high re-
sults in the following:

• counting of AUX TRIG 1 counter and AUX TRIG 0 counter

8



• mapping of AUX TRIG 2 and AUX TRIG 3 to some output ports

• CLOCKED TRIG goes high

Yet all of the signals/ports involving AUX TRIG dont go anywhere (their out-
put ports are cut off in Oberlas ACC top v0 1.bdf file). The only useful out-
come is CLOCKED TRIG, which enables xTRIG OUT to go high for all 8 ACDC
boards.

2.5.2 Summary of 2.5

The only outputting signal from triggerAndTime module, related to functional-
ity cc read mode, is xTRIG OUT. This signal goes to a port called xtrig[7..0] in
ACC main, which gets mapped to an output signal called xDCout (1), which goes
to lvds rx in[1] in decode instruct module of ACDC boards. There, it functions
essentially as a global reset signal (see line 131 132 in decode instruct).

3 Align LVDS

3.1 Introduction and bit-field range

This functionality is designed to align ACC and ACDC boards. This is done in
two aspects:

• It aligns the signals that get sent to / get sent by the ACDC boards from / to
the ACC board

• It aligns the two boards such that a global reset signal can be passed from the
ACC to the ACDC board to trigger a clear-all process in the ACDC

The signal ALIGN LVDS FLAG is turned on by the USB command D. After
being sent via the SERDES line (ALIGN LVDS FLAG is mapped to xDCout(2) in
ACC main module) to the ACDC, it gets mapped to two different places: module
decode instruct and lvds com.

9



The following is the bit-field range of USB INSTRUCTION for align lvds func-
tionality:

Bit Range Name Description
19-16 0xD Command marker

3.2 In decode instruct: Enabling Global-Reset ACDC

The signal is mapped to an external port of this module called xALIGN ACTIVE,
which serves essentially as a flag which indicates that the alignment is good between
the two boards. With this signal high, a hardware reset signal from the USB of
ACC (this is how the functionality Hardware reset comes into play: it sends a signal
called xTRIG FROM SYS from the ACC board to give a global reset command to
the ACDC board) is able to turn the global reset signal high, resulting in a global
clear-all signals occurring in all the different modules within the ACDC.

3.3 In lvds com: Enabling data-transmission

The signal is mapped to an external port of this module called xALIGN ACTIVE,
which functions (in line 177 specifically) to enable the received data from ACC
(RX DATA) to be checked (the specific criteria this is checking can be seen in the
documentation on cc read mode functionality, here it is involved only because this
checking process is enabled by align lvds functionality). Eventually, this enables data
to be transmitted back to ACC for readout.

Another function that align lvds serves in this module can be seen in line 249, in
which it enables RX DATA (instruction data from ACC) to map to CC INSTRUCTION,
which eventually goes to a port in decode instruct called xINSTRUCT WORD. Sig-
nificantly, this signal gives various instructions to the ACDC board depending on
the different CC INSTRUCTION it receives. For specific instructions, see documen-
tation on cc read mode.

10



4 Hardware Reset

4.1 Introduction and bit-field range

This functionality is intended to set a global reset signal in both the ACC and
the ACDC boards. This is achieved by signals called HARD RESET and RE-
SET DLL FLAG which serve as such global reset signals in the ACC and by apply-
ing certain signals (SOFT TRIG, ALIGN LVDS FLAG, etc.) related to the software
trigger and align lvds functionalities.

The following is the bit-field range of USB INSTRUCTION for Hardware Reset
functionality:

Bit Range Name Description
19-16 0x4 Command marker
11-0 0xFFF, 0xEFF
15-12 0x1, 0x3, 0xF Controls RESET DLL FLAG

4.2 11-0: global reset

In general, this part functions as a hardware reset which resets processes/sig-
nals within the ACC board. It further functions as a hardware reset of the ACDC
board (this is done by using some functionality involving software trigger and align
lvds).

• Software trigger: When USB INSTRUCTION(15..12) is FFF (twelve binary
digits all set to 1), we set three signals related to software trigger to high:
SOFT TRIG, SOFT TRIG MASK, and cc only instruct rdy. This enables a
dedicated trigger line (xDCout (1)) to be sent to all the (8) ACDC boards. In
each ACDC board, this signal functions (together with xDCout (2) set high)as
a global reset.

• Align lvds: to satisfy the condition (xDCout (2) set high), ALIGN LVDS FLAG
is set high. Together, they turns global reset on, which (in the clock main mod-
ule of ACDC) turns on a clear-all signal that resets a lot of processes/signals
in all the modules within the ACDC.

11



• hard reset: When USB INSTRUCTION(15..12) is FFF (twelve binary digits
all set to 1), a signal called HARD RESET is set high, which serves as a global
reset/clear-all signal that goes to USBwrapper and triggerAndtime. NOTE:
for what specific tasks the global reset signal performs, see Software-
trigger functionality

Note: the clear-all design in both the ACDC (software trigger and Align lvds) and
the ACC (HARD RESET) involves a similar process of counting clock signals. The
specific processes, respectively, can be seen in line 72 115 (progreset component in
CLKain in ACDC) and line 119 157 (progreset component in ACC main). In both
processes, a signal (PULSE RES in the ACC for example) is set high (in this case
by HARD RESET). When this happens (which is its rising edge), we start counting
100000 clock signals (in both situations, CLK). In this counting process, an inter-
mediate signal (in the ACC, xRESET SIG(2)) is set high until the counting stops.
This intermediate signal in turn triggers the global-reset signal.

4.3 15-12: Reset DLL Flag

In general, there are three circumstances under which an internal signal called
RESEST DLL FLAG is set high: when the 15 downto 12 digits of the bit field is
0001, 0011, or 1111.

RESET DLL FLAG is sent out to a port called xEVENT AND TIME RESET
in the triggerAndTime module. In this module, it functions (when set high) as a
clear-all signal that sets a bunch of signals to zero. NOTE: It is unclear what further
significance RESET DLL FLAG has, since the signals that are set zero are not closely
related to each other or to a specific use (see Signal Charts for reference).

12



5 Prepare Sync (This needs revision: don’t really

understand this)

5.1 Introduction and bit-field range

This functionality involves initializing other two functionalities (software trigger
and cc read mode) by preparing for them a synchronization of related signals (such
as soft trig for software trigger functionality).

The following is the USB INSTRUCTION bit-field range for this functionality:

Bit Range Name Description
19-16 0xB Command marker
1 trig valid If USB INSTRUCTION(2) = 1
3 CC SYNC If USB INSTRUCTION(4) = 1
0 CC SOFT DONE If USB INSTRUCTION(4, 2) = 0

5.2 Three cases

In line 834 of the usbWrapperACC module, the process starts with different cases
of USB INSTRUCTION, and results in different outcomes of 1. cc only instruct
ready and 2. cc instruct ready and 3. the value of trig valid flag (which gets sent to
triggerAndtime module).

5.2.1 Enabling Synchronizations?

Signal Description: When bit 2 of USB INSTRUCTION goes high, the bit-field
is assigned as the follows: the value of bit 1 of USB INSTRUCTION is assigned
to trig valid (which is outputted to trigger and time module), and the value of
USB INSTRUCTION is assigned to CC INSTRUCTION. In addition, we have two
outcomes: ready for cc instruct and ready for instruct are set high. (NOTE: in gen-
eral, this part has the following primary outcomes: the value of cc only instruct rdy
and cc instruct rdy; the value of cc instruction (whether it goes to 0s or has the value
of USB INSTRUCTION); the value of trig valid)

13



Summary: In the context of the usbWrapperACC, the first signal (ready for cc instruct)
set high enables the functionality software trigger (when 0xE) to run. In line 536,
only when ready for cc instruct = 1 can the SOFT TRIG signals get synchronized.
Similarly, the second signal (ready for instruct) set high enables the functionality cc
read mode (when 0xC) to run. In line 635, only when ready for instruct = 1 can the
CC instruction signals get synchronized.

In other modules (TRIG VALID, SYNC MODE): trig valid goes to the
port xEXT TRIG VALID in triggerAndtime module. In general, it functions as
a flag which enables an internal signal called LATCHED TRIG to be turned on.
In the general context of the DAQ functionalities, this enables one branch of the
functionality cc read mode to run (part of cc read mode functionality (see line 225
triggerAndTime) relies on sending a signal called xTRIG OUT out of the triggerAnd-
Time module into the ACC main module, for specific reference see documentation
on cc read mode).

As an internal signal, SYNC MODE doesnt get mapped anywhere. This seems to
be useless.

5.2.2 Stop Synchronization

Signal Description: When bit 4 of USB INSTRUCTION is high (and bit 2
is low), both cc only instruct rdy and cc instruct rdy are set low. In addition,
CC INSTRUCTION is set to 0s. This therefore seems to be a reset/clear-all type of
function.

Summary: This disenables both software trigger and cc read mode functionali-
ties.

In other modules (CC SYNC): This signal is mapped to a signal called CC SYNC REG.
This signal functions as a flag in the synchronization processes for software trigger
and cc read mode. When turned high, this indicates that the signals are not synced
yet and have to go through synchronizations. When turned low, it indicates that the
signals are ready to be sent out.

14



5.2.3 ???

Signal Description: he remaining case is that if USB INSTRUCTION(4) and (2)
are both low, then we disenable software trigger functionality and enable cc read mode
functionality (in the firmware level, this is done by setting CC INSTRUCTION
¡= USB INSTRUCTION (which enables USB INSTRUCTION to be sent via xD-
Cout (0) to the front-end boards) and by setting CC INSTRUCT RDY ¡= 1).

NOTE: The unique part of this process is that CC SOFT DONE is mapped to
USB INSTRUCTION(0). In a larger scale, this signal is sent to a port called xready
in the ACC main module.

In other modules(CC SOFT DONE): In the ACC main module, this signal
gets sent to an internal signal (inside the component transceivers) called xSOFT RESET.
When this signal goes high (which means USB INSTRUCTION(0) is high) it disen-
ables the cc read mode functionality to get data from the ACDC boards (refer to line
313 and 355 in transceivers.vhd). Of course, when USB INSTRUCTION(0) is low,
this enables the cc read mode functionality to run. In general, it serves as a software
reset which indicates that the software is done reading to cpu and therefore either
sets all the read-data relevant data to low or blocks the cc read mode functionality
(as described above).

References

[1] http://psec.uchicago.edu/library/data/Margherita/M12/photos/

15


	Software Trigger
	Introduction
	In TriggerAndTime Module

	CC Read Mode
	Introduction and bit-field range
	Initialization: Synching CC instruction signals inside USBWrapper module
	Signals that have gone into ACC_main from usbWrapperACC
	Functionality of xInstruct_ready
	Functionality of xInstruction[31..0]
	Functionality of xfe_mask[7..0]
	Summary of 2.3

	In ACDC: Instructions from ACC via LVDS
	Process 181: Alignment & Readout
	Process 246: passing instructions to decode_instruct module
	Various Instructions given by xINSTRUCT_WORD in decode_instruct

	Signals that have gone into triggerAndTime from usbWrapperACC
	Functionality of these signals
	Summary of 2.5


	Align LVDS
	Introduction and bit-field range
	In decode_instruct: Enabling Global-Reset ACDC
	In lvds_com: Enabling data-transmission

	Hardware Reset
	Introduction and bit-field range
	11-0: global reset
	15-12: Reset_DLL_Flag

	Prepare Sync (This needs revision: don't really understand this)
	Introduction and bit-field range
	Three cases
	Enabling Synchronizations?
	Stop Synchronization
	???



