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1. Desorption kinetics in a cylindrical pore in presence of physisorption

After the end of a dose, pores in a substrate are ideally saturated with a constant partial
pressure of a reactant. During purging, this reactant needs to diffuse out of the pore. The
characteristic time determines the interval between ALD doses.

In most of cases, dimensions of the pores and process pressure are such that diffusion
takes place in the Knudsen regime. This allows us to estimate the characteristic diffusion
times based on the Knudsen diffusion coefficient and the characteristic dimensions of the
pore. In this case:

(1) τdiff =
L2

D
=

3L2

vthd

where vth is the mean (rms) thermal velocity, L is the pore length and d is the pore
diameter.

However, this model assumes that there is no physisorbed species on the internal surface
of the pores. The goal is to understand how the presence of weakly bonded species in
equilibrium with the precursor in the gas phase can affect the outgassing process and the
required purge times.

1.1. Model equation. We will assume that a fraction of the available surface sites θ is
covered by physisorbed species. Then, assuming adsorption and desorption processes that
are first order in the fraction of available sites and surface coverage, respectively, the change
with time of the surface coverage will be given by:
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In steady-state condition this expression leads to a Langmuir isotherm:
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Likewise, we can use the diffusion equation to model the transport of the gaseous species
inside the feature:
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subject to the following boundary conditions: at the bottom of the pore (or the middle
point if it is a two-sided open pore) the boundary condition is:

(5)
∂n

∂t

∣∣∣∣
L

= 0

At the entrance of the pore, there is a linear relationship between the density gradient and
the precursor density:
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4
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The impact of physisorption on the outgassing from a pore can be studied by solving
these two equations together subject to the boundary conditions mentioned above. How-
ever, it is possible to greatly simplify the problem if the surface coverage θ is small. The
first thing is to realize that by combining Eqs, 4 and 2 we obtain a expression relating the
rate of change of gaseous and adsorbed species:
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If the coverage is small, the Langmuir isotherm 3 can be simplified, so that:
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Finally, under the quasiequilibrium approximation (adsorption/desorption rates are much
faster than diffusion rate), we obtain from Eq. 9 that:
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so that Eq. 4 is transformed into:
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From Eq. 10 we see that the net effect of physisorption is to slow down the outgassing
process, and the the outgassing can be modeled using an effective diffusion coefficient Deff

given by:

(11) Deff
D

1 + S
s0V

θ0
n0

So that the characteristic desorption time τd, by analogy with 1 is given by

(12) τd =

(
1 + θ0

4kBT

p0s0d

)
τdiff

where p0 is the precursor pressure during dose time and d is the diameter of the pore.

Note. The physisorption behavior is determined by picking a initial coverage θ0 and pres-
sure p0. These two parameters by themselves define the adsorption isotherm.
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Note. The presence of physisorption can increase desorption times by more than two orders
of magnitude. We can estimate desorption times by assuming a coverage θ0 for a given
precursor pressure p0

1.2. Validity of the model approximations. How good an approximation is Eq. 12?
To answer this question we solved the full diffusion, adsorption/desorption model for a
single MCP pore for different values of θ0. Figure 1 shows the outgassing flow as a function
of time. When the flow is plotted against the normalized time t/τd all plots coalesce into a
single curve, indicating that τd is indeed a good estimate of the characteristic time for the
out-diffusion process.
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Figure 1. Out-diffusion flow of a single pore showing coalescence into a
single curve when plotted against normalized time t/τd

By having physisorbed species the characteristic time can be much larger than that
predicted using the pure diffusion theory. In Figure 2 the τd/τdiff ratio is plotted against
the θ0/p0 ratio, where the pressure is in Torr. Figure 2 shows that physisorption can have
a substantial effect on the purge times of isolated pores.

2. Simplified adsorption-desorption model

The model developed in the previous section assumes a single, isolated pore. In this
section we generalize the model and couple it to a simple model of a viscous flow reactor
to understand the dynamics of purging in presence of high aspect-ratio substrates.

To be precise, we should solve the diffusion model for every point of the MCP coupled
to the reactor flow. But it would take forever. Instead, we can take advantage of the
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Figure 2. Relative increases in desorption time due to the presence of ph-
ysisorbed species as a function of τd/τdiff the θ0/p0 ratio for the dimensions
of an MCP pore

result obtained above showing that the desorption kinetics from an MCP is dominated by
a characteristic time τd, such as that provided in the previous section.

In order to model a more complex situation involving inflow into the pore, we just apply
the superposition principle. Thus, if N is the total number of molecules inside the pore,
we have that:

(13)
dN

dt
= Sopφin −

1

τd
N

where

(14) φin =
1

4
vthn

is the precursor flux at the entrance of the pore, which depend on the precursor density in
the reactor n and the area of the opening of the pore, Sop.

If we assume a surface coverage θ0, then the total number of molecules adsorbed in the
pore will be N0 = θ0S/s0, where S/s0 is the number of adsorption sites, obtained as the
ratio of the total internal area of a pore and the average area of an adsorption site.

2.1. Coupling with a plug flow model. In a plug flow model, the transport of a species
through the reactor is modeled using the following equation:

(15)
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where u is the mean flow velocity, G is the surface gain term, L is the surface loss term
and R is the reactor radius or the distance between parallel plates in a cross flow reactor.

The loss term is simply the diffusion into the pore:

(16) L = f
1

4
vthn

and the gain term is due to out diffusion:

(17) G = f
1

τd

N

Sop

Here Sop is the surface area of the pore opening and f is a factor taking into account the
transparency of the MCP and the fractional area of the surface occupied (1/2 in a parallel
plate reactor).

From the model above, it is clear that, in equilibrium, the net difference between gain
and loss is zero. However, during purging this equilibrium breaks down. We start from
n = 0 at the entrance of the reactor and this purge pulse propagates downstream. In the
meantime, the surface of the pores still contains a fractional coverage θ0. This will act as
a net source of precursor molecules to the reactor.

2.2. General solution of the model. We need to solve:

(18)
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)
coupled to:

(19)
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N

subject to N(z, 0) = N0 = θ0S/s0 and n(0, t) = 0. τd. τd can then be obtained from:

(20) τd =

(
1 + θ0

4kBT

p0s0d

)
τdiff

All the coefficients can be derived from the experimental conditions, plus our assumption
for the adsorption isotherm by assigning values to θ0 and p0.

Before giving the solution for a situation relevant to the MCP case, it can be shown that
it is possible to reduce the problem to:

(21)
∂X

∂r
=

α

1 − e−α
Y − αX

and

(22)
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where:

X = n/n0(23)

Y = N/N0(24)

r = z/l(25)

s =
t

τd
− z

uτd
(26)

n0 =
8θ0

s0vthτd

L

d

(
1 − e−α

)
(27)

α =
fvthl

2Ru
(28)

Here l is the size of the substrate, L is the pore depth, and d is the pore diameter. The
main reason for bothering in reducing the model into its non-dimensional form is that it
identifies α as the main parameter controlling the behavior in the system:

n(t, z) = n0X ((t− z/u)/τd, z/L;α)(29)

N(t, z) = N0Y ((t− z/u)/τd, z/L;α)(30)

Anything that changes α will have an impact on the desorption of the MCP pores.

Note. According to the model, the most effective changes in the experimental conditions
are those that affect α the most.

2.3. Application to the MCP case.

2.3.1. Water and precursor reference cases. We will define some reasonable conditions as
our reference case for both water and precursor purging.

Table 1. Main parameters for the reference case

Symbol Parameter Value
d MCP diameter 20 µm

2L MCP width 1.2 mm
2f MCP transparency 0.6
l MCP substrate size 200 mm
M Molecular mass (water) 18 amu
M Molecular mass (precursor) 150 amu
u mean flow velocity 1 m/s
T temperature 473 K

s0 average adsorption site 10 Å
2

R characteristic reactor width 2 cm
p0 dose pressure (water) 100 mTorr
p0 dose pressure (precursor) 10 mTorr
θ0 initial physisorption coverage 0.01
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In absence of physisorption, the characteristic diffusion time τdiff is 2.2 ms for water
and 6.6 ms for the precursor case. By considering a 1% coverage of physisorbed species,
the characteristic desorption time τd becomes 25 and 660 ms, respectively. Therefore,
physisorbed species have the potential of further increasing purge times with respect to
the ideal out-diffusion case.

Figures 3 and 4 show the water partial pressure in the gas phase over the MCP and the
relative surface coverage for the reference conditions shown in Table 1.
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Figure 3. Relative physisorbed coverage inside the MCP pores as a func-
tion of MCP position for different purge times.

Even after 1s purge the amount of adsorbed water at the end of the MCP has reduced by
less from half. Therefore, for the downstream section of the MCP, characteristic desorption
times go from being of the millisecond order in absence of physisorption to 25 millisecond
for an isolated pore to 1 s when a 20 cm MCP is considered.

The reason for such dramatic increase is clear from Figure 4. At the entrance of the
MCP, there is no water partial pressure in the reactor. As the flow moves over the MCP,
the partial pressure increases, until reaching an equilibrium with the adsorbed water inside
the pores, which delays the out diffusion process downsteram. Only when the upstream
water is eventually pushed downstream, the downstream pores begin to empty up. As can
be seen from Figs. 3 and 4, this effect is strongly size-dependent: if only 2 cm piece is
considered, the outgassing takes place in less than half a second.

We can see the effect of MCP position on desorption by following the coverage as a
function of time for different positions in the MCP. Figure 5 follows five points located at
0, 5, 10, 15 and 20 cm from the upstream position.
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Figure 4. Water partial pressure above the MCP as a function of MCP
position for different purge times.
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Figure 5. Change with time of relative coverage at different positions in
an MCP substrate
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The situation is even worse in the precursor reference case. As shown in Figs. 6 and 7,
after 5 seconds of purging the concentration of physisorbed precursors in the pores on the
downstream half of the MCP has barely started to go down.
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Figure 6. Relative physisorbed coverage of precursor inside the MCP pores
as a function of MCP position for different purge times.

As in the water case, the characteristic time for out-diffusion that can be estimated
from the time profiles at different positions on the MCP (Figure 8) is much longer than
the estimated 600 ms for the isolated pores.

The significantly worse performance of the precursor compared to water comes mainly
from two factors: the larger mass, which slows down the out diffusion process, and the
lower partial pressure used in the reference case (precursors are more sticky).

As shown in the previous section, much of the physics is contained in the parameter α:

(31) α =
fvthl

2Ru

Lower values of α tend to mitigate the problem in the downstream section of the MCP:
larger cross sections or top-bottom distances (R) in the reactor, larger velocities v or
a reduction of the density of pores (not viable for the MCP case) tend to give more
homogeneous profiles. As it is also apparent from the definition of α and the results
shown above, the problem is compounded for large substrates (large l).

The dependence of the substrate size emphasizes the fact that the increase in desorption
times is a consequence of a cascade effect. It can be shown that the surface coverage
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Figure 7. Precursor partial pressure above the MCP as a function of MCP
position for different purge times.
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Figure 8. Change with time of relative precursor coverage at different
positions in an MCP substrate
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depends on the previous history of the precursor partial pressure at that particular point:

(32) θ(t, z) = θ0e
−(t−z/u)/τd + c

∫ t−z/u

0
dt′n(z, t′)et

′/τde−(t−z/u)/τd

Where c is a constant that depends on the experimental conditions. Smaller substrates
lead to lower partial pressures and to a smaller effect of readsorption on desorption times.

2.4. Model limitations. This is the simplest possible model that captures the complex-
ities of purging large area nanoporous substrates. A more accurate representation would
solve the transport equation in each section of the MCP. Also, we have neglected axial
diffusion, which can lead to back-diffusion in the cases where large gradients in precur-
sor pressure are present across the MCP. Finally, a 2D picture would provide a better
understanding of the precursor dynamics over the MCP area, including any stagnation
generated by precursor gradients opposing the direction of flow due to precursor build-up
on the dowstream area of the MCP plates.

Note. Caveat emptor: we don’t have any experimental evidence on the presence of these
physisorbed species. We might be focusing on something that may not exist.


