
v1a
December 16, 2016

2D translation stage quick-guide

Evan Angelico, Andrey Elagin, Henry Frisch, Eric Spieglan
The University of Chicago

Figure 1: The two translation stages are suspended overhead an LAPPD in production.

1 Connections to the motors

• Log in to margherita@psec2.uchicago.edu. This is the control user for the 2d
motor stage.

• Locate yourself into the directory,
/local/data2/margherita/margherita run scripts/run motors

• Plug USB cables attached to psec2 into the USB485 boxes that are attached to
the motors (little white boxes with a USB mini port)

• Two new usb-serial ports will become active on psec2; both should now be
mounted as /dev/ttyUSB[1-2], or some other number. If they are not, contact
Mary Heintz (maryh@edg.uchicago.edu)

• Make sure that these /dev/ttyUSB ports have permissions that allow Margherita
to read and write. In chmod code, this is 666, or crw-rw-rw- .

– What likely happened is that the permissions are set to crw- - - - - - -. If
so, change them using chmod 666 /dev/ttyUSB1 1

• Connect two DC power supplies, one for each motor. The motors take 10-40V
supplies, and have a max current of 2 amps (nominal/default running current is
0.6 amps)

1You need root access for this. Ask Mary for the password or look on the first page of the Margherita
3 log book

1



2 Code-base and testing

2.1 Initial test

• Import the test program 2 into python:
python -i load2Motors.py

• Connect to the two motors by loading them into an object variable:
> motors = loadMotors()

• If your serial communications are working properly, this will have printed:
Motor communication port has been opened

Motor communication port has been opened

Motors at position: (<x>, <y>)

• If instead, you do not get any messages, or the messages hang and do not print
the motor position or do not return you to a python command prompt, you may
have the following issues:

– Motor is not being powered: the motor must have its power supply
plugged in, in order to receive and send serial communications. It is not
supplied power by USB. So, there must be both a USB going to the grey
USB485 box, and a 10-40V power supply going to the motor.

– USB serial port has incorrect permissions: Usually this results in a
permissions error, but make sure to follow the instructions in the first section
for correcting the permissions of the motor drivers.

– Other

• If you were able to load the motors properly, some basic test commands are

– Print: > print str(motors)

– Move relative (1 cm in x, 0 in y): > motors.mr(1, 0)

2.2 Program descriptions

In the directory /local/data2/margherita/margherita run scripts/run motors,
you will find a number of python programs that have a few inter dependencies. I have
encapsulated the gritty details of the motor driver into this python code and (hope-
fully) created something usable to the point of you not having to ever look at most of
the python code. Their descriptions are below:

• Motor.py: (dependent on none) This is a class file that defines the class, Motor.
A “Motor” is an object that controls one motor and its basic functions. This
class has the lower level serial communications built in to its functions.

2see next subsection of program descriptions

2



• TwoMotors.py: (dependent on Motor.py) This is a class file that defines the
class, TwoMotors. “TwoMotors” is a way of combining two motor objects into
one object that knows about its position in 2d space. The TwoMotors class also
implements regulations on the spatial boundaries for both motors.

• load2Motors.py: (dependent on TwoMotors.py and Motor.py) This is a pro-
gram that is written for testing purposes. Usage:
python -i load2Motors.py

> motors = loadMotors()

> motors.mr(2,3)

The first line imports the program functions, the second line loads the two mo-
tors into a “TwoMotor” object called “motors”, and the third line does a basic
function of the two-motors, “move-relative” in the x,y plane.

• 2dScan.py: (dependent on TwoMotors.py) This program is what you will run
in order to do continuous position scanning and position data logging. 3 This
is where you will store “configurations”, which are sets of (x,y) coordinates for
which you want to scan over. The program also allows you to write your own
“scanning procedure”; for example, sit→ wait → log → move or log → move →
log → move, etc.

3 Miscelaneous notes:

• The motors reset their absolute position to 0 when they are power cy-
cled. This is built in to their firmware. So if you have calibrated with absolute
positions, manually move to motors to (0,0) before unplugging.

• The motors have a built in firmware stop that does not allow them to go to an
absolute position that is less than 0. To bypass this, use (and read) the two
functions:
TwoMotors.freeZero() from “TwoMotors.py”
Motor.redefineAbsPosition(x) from “Motor.py”

• If the motors go haywire, in other words they start running away out of control
(this should not happen, but just in case... ) unplug the motor power cable, not
the usb connection.

• Find manuals for our model here:
http://www.linengineering.com/products/integrated motors/silverpak-17c-2/

3The data logging works as follows: there is a “motorLog.txt” data file that stores the position of
the motors and the time at which the motors were at that position. During analysis, one can match
motor positions/times to photocurrent/times and fold them together to make plots. This plotting
code is not covered in this guide

3

http://www.linengineering.com/products/integrated_motors/silverpak-17c-2/

	Connections to the motors
	Code-base and testing
	Initial test
	Program descriptions

	Miscelaneous notes:

