Directional Liquid Scintillator Detector

Andrey Elagin University of Chicago

CPAD Workshop, Caltech, October 9, 2016

1

Outline

- Motivation $O_V\beta\beta$ -decay
- Event topology reconstruction by Cherenkov/scintillation light separation
- NuDot 1m³ prototype of directional LS detector

 work done by MIT/UCLA L. Winslow group:
 D. Gooding (MIT), B. Naranjo (UCLA), J. Ouellet (MIT),
 R. Schofield (UCLA), L. Winslow (MIT), T. Wongjirad (MIT)

Double Beta Decay

Search for neutrino-less double beta decay ($0\nu\beta\beta$ -decay) is the most feasible way to determine if the neutrino is its own antiparticle

How to Find Ovßß-decay?

1) Choose isotope where $Ov\beta\beta$ -decay is allowed

2) Wait for emission of two electrons with the right total energy

Experimental Sensitivity

Getting down to $m_{\beta\beta} \sim 10^{-3}$ eV is very difficult

Why is it difficult?

- Need very large mass
- could be a few events per year even in a kilo-ton scale detector
- Need "zero" background
- high purity
- good energy resolution
- good particle ID and event topology reconstruction at ~1 MeV
- Liquid scintillator detectors scale well to very large masses
 - purification and self-shielding may allow for "zero" reducible background
 - high light yield and collection efficiency may allow for low $2\nu\beta\beta$ background
 - ⁸B solar neutrino becomes dominant background
 - nearly flat energy spectrum around Q-value
 - this is irreducible background without event topology reconstruction

Background Budget at SNO+

The largest background is coming from ⁸B solar neutrinos It has only 1 electron, while $\nu\beta\beta$ -decay has 2 electrons

Is it possible to separate two-track and one-track events using Cherenkov light in a liquid scintillator detector? ⁷

Can We See This?

Simulation of a back-to-back $0\nu\beta\beta$ event

- I started thinking about this in 2012 in the context of new applications for LAPPD
- I think it's quite possible to reconstruct $0\nu\beta\beta$ -decay event topology in a large liquid scintillator detector using fast timing
- It will take very challenging instrumentation development

Double beta decay kinematics

- Distinct two track topology with preference to be back-to-back
- Electrons are above Cherenkov threshold

Angle between two electrons

Kinetic energy of each electron

What about scintillation light?

- Scintillation is "slow" compared to Cherenkov
 - Cherenkov emission is prompt
 - red tail of Cherenkov photons travels faster
- Early light is directional due to Cherenkov component

Early Light Topology

- A good pattern recognition algorithm should pick up the difference between two track and one track topologies
- E.g., a spherical harmonics analysis can separate signal and background on a statistical basis

S₂

3

0

1

Multipole moment

2

- see arXiv:1609.09865 for details (submitted to NIM)

$$S_{f\!f}(\ell) = \sum_{m=-\ell}^\ell |f_{\ell m}|^2$$

$0\nu\beta\beta$ vs ^{8}B

Simulation details:

- 6.5m radius detector, scintillator model from KamLAND simulation
- TTS=100 ps, 100% area coverage, QE(che) ~12, QE(sci) ~23%

Key parameters determining separation of $0\nu\beta\beta$ -decay from ⁸B:

- Scintillator properties (narrow spectrum, slow rise time)
- Photo-detector properties (fast, large-area, high QE)
- Measuring photon color and timing with high precision would be even better...

NuDot - Directional Liquid Scintillator

R&D Towards Large Scale Detector for $0\nu\beta\beta$ -decay Under construction at MIT, led by L. Winslow

140 2" fast PMTs for timing

72 10" regular PMTs mounted on Winston Cones for energy resolution

Goals

 Demonstrate directionality and event topology reconstruction using che/sci separation by fast timing

- ideally by measuring $2\nu\beta\beta$ -decay
- Study scintillators, including quantum dots

2.2 m

What Are Quantum Dots?

- Q-dots are nanocrystals of semiconductor with interesting optical properties
- Common crystals are CdS, CdSe, CdTe interesting for $v\beta\beta$ -decay
- Q-dots can be suspended in organic solvents and water

Q-dots

- Optical properties and $0\nu\beta\beta$ -decay compatibility are very interesting
- Still quite expensive
- More in-depth R&D is needed to evaluate potential of Q-dots

FlatDot Demonstration

A grid of 5x5 PMTs (2", TTS 300ps)

Goals

- Intermediate step towards 1m3 spherical NuDot - e.g. detection of Cherenkov "rings" from low energy electrons using a tagged Compton source
- Testing different scintillator cocktails
- Readout testing

Geant-4 based MC

FlatDot Status

Voltage (mV)

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

Number of Photoelectrons

Summary

Dirac/Majorana nature of the neutrino is a fundamental question Search for $0\nu\beta\beta$ -decay is the most feasible approach to answer this question Very large detector mass (kilo-ton) is required to probe small m_{BB} ⁸B solar neutrinos become dominant background - traditionally viewed as irreducible Directionality and event topology provide handles on ⁸B and other backgrounds

Detector R&D is on going to demonstrate event topology reconstruction using Cherenkov/scintillation light separation