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Abstract

We present a technique for separating nuclear double beta decay (ββ-decay) events from back-
ground neutrino interactions due to 8B decays in the sun. This background becomes dominant in a
kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible
due to an overlap in deposited energy with the signal. However, electrons from 0νββ-decay of-
ten exceed the Cherenkov threshold in liquid scintillator, producing photons that are prompt and
correlated in direction with the initial electron direction. The use of large-area fast photodetec-
tors allows some separation of these prompt photons from delayed isotropic scintillation light and,
thus, the possibility of reconstructing the event topology. Using a simulation of a 6.5 m radius liq-
uid scintillator detector with 100 ps resolution photodetectors, we show that a spherical harmonics
analysis of early-arrival light can discriminate between 0νββ-decay signal and 8B solar neutrino
background events on a statistical basis. Good separation will require the development of a slow
scintillator with a 5 nsec risetime.
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1. Introduction1

The electron, muon, and tau neutrinos are unique among the standard model fermions in being2

electrically neutral and orders-of-magnitude less massive than their standard model charged part-3

ners [1]. These two properties motivate the possibility that these neutrinos are ‘Majorana’ rather4

than ‘Dirac’ particles, i.e. different from their respective charged partner leptons by being their5

own anti-particle [1, 2]. In 1939 W. Furry pointed out that a Majorana nature of the electron neu-6

trino would allow neutrinoless double-beta decay, in which a nucleus undergoes a second order7

β-decay without producing any neutrinos, (Z, A) → (Z + 2, A) + 2β− [3]. This is in contrast to the8

Goeppert-Mayer two-neutrino double beta (2νββ) decay, the second order standard model (SM)9

β-decay channel in which lepton number is conserved by the production of two anti-neutrinos,10

(Z, A)→ (Z, A + 2) + 2β + 2ν̄e [4].11

The standard mechanism of 0νββ-decay is parametrized by the effective Majorana mass, de-12

fined as mββ ≡
∣∣∣∑i U2

eimi

∣∣∣, where Uei are the elements of the PMNS matrix and mi are the neutrino13

masses [1]. Current half-life limit translate to a limit on mββ . 61 − 165 meV [5]. The next gener-14

ation of 0νββ-decay experiments [6] seek to be sensitive enough to detect or rule out 0νββ-decay15

down to mββ . 10 meV. This will require a detector to instrument roughly a ton of active isotope16

with good energy resolution and a near zero background.17

Liquid scintillator-based detectors have proven to be a competitive technology [7] and offer18

the advantage of scalability to larger instrumented masses by dissolving larger amounts of the19

isotope of interest into the liquid scintillator (LS). This may allow scaling to 1 ton or more of20

isotope using detectors already in operation [8]. In a large LS detector, most backgrounds can be21

strongly suppressed through a combination of filtration of the LS to remove internal contaminants,22

self-shielding to minimize the effects of external contaminants, and vetoes to reduce muon spal-23

lation backgrounds. The dominant backgrounds are the standard model 2νββ-decay and electron24

scattering of neutrinos from 8B decays in the sun.25

In a previous work [9] we have shown that large-area photo-detectors with timing resolution of26

∼100 ps can be used to resolve prompt Cherenkov photons from the slower scintillation signal in27

a large LS detector and that the resulting distributions can be fit for the directions and origin of28

∼MeV electrons. Here we present a study of applying this technique to the topological separation29

of 0νββ-decay signal and 8B background using a spherical harmonic decomposition to analyze30

the distribution of early (and hence weighted toward Cherenkov photons) photoelectrons (PEs) as31

a topological discriminant.32

The organization of the paper is as follows. Section 2 describes the detector model. Details on33

event kinematics and PE timing for signal and background are given in Section 3. In Section 4,34

we introduce the spherical harmonic decomposition and discuss the performance of this analysis35

in Section 5. The conclusions are summarized in Section 6.36

2. Detector Model37

We use the Geant4-based simulation of Ref. [9] to model a sphere of 6.5 m radius filled with38

liquid scintillator. We consequently limit the discussion of the simulation to a summary of the39

most relevant parameters.40

The scintillator composition has been chosen to match a KamLAND-like scintillator[10]. The41

composition is 80% n-dodecane, 20% pseudocumene and 1.52 g/l PPO with a density of ρ =42
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0.78 g/ml). We use the Geant4 default liquid scintillator optical model, in which optical pho-43

tons are assigned the group velocity in the wavelength region of normal dispersion. The attenua-44

tion length[11], scintillation emission spectrum[11], and refractive index[12] include wavelength-45

dependence. The scintillator light yield is assumed to be 9030 photons/MeV) with Birks quench-46

ing (kB ≈ 0.1 mm/MeV)[13]. However, we deviate from the baseline KamLAND case in that the47

re-emission of absorbed photons in the scintillator bulk volume and optical scattering, specifically48

Rayleigh scattering, have not yet been included. A test simulation shows that the effect of optical49

scattering is negligible [9].50

The technique of using Cherenkov light for topological 8B background rejection depends on51

the inherent time constants that (on average) slow scintillation light relative to the Cherenkov light52

for wavelengths longer than the scintillator absorption cutoff (between 360-370 nm [14]). The first53

step in the scintillation process is the transfer of energy deposited by the primary particles from54

the scintillator’s solvent to the solute. The time constant of this energy transfer accounts for a rise55

time in scintillation light emission. Because past neutrino experiments were not highly sensitive56

to the effect of the scintillation rise time, there is a lack of accurate measurements of this property.57

We assume a rise time of 1.0 ns from a re-analysis of the data in Ref. [14] but more detailed studies58

are needed.59

The decay time constants are determined by the vibrational energy levels of the solute and are60

measured to be τd1 = 6.9 ns and τd2 = 8.8 ns with relative weights of 0.87 and 0.13 for the Kam-61

LAND scintillator [15]. In a detector of this size, chromatic dispersion, wherein red light traveling62

faster than blue due to the wavelength-dependent index of refraction, enhances the separation.63

The inner sphere surface is used as the photodetector. It is treated as fully absorbing with no64

reflections and with 100% photocathode coverage. As in the case of optical scattering, reflections65

at the sphere are a small effect that would create a small tail at longer times and, hence, does not66

affect the identification of the early Cherenkov light. The assumed quantum efficiency (QE) is67

that of a typical bialkali photocathode (Hamamatsu R7081 PMT [16], see also Ref. [17]), which68

is 12% for Cherenkov light and 23% for scintillation light. We note that the KamLAND 17-69

inch PMTs use the same photocathode type with similar quantum efficiency; photocathodes with70

higher efficiencies are now starting to become better understood theoretically and may become71

commercially available [18–20]. In order to neglect the effect of the transit-time-spread (TTS)72

of the photodetectors, we use a TTS of 100 ps (σ), which, for example, can be achieved with73

large area picosecond photodetectors (LAPPDs) [21]. We neglect the (small) threshold effects74

in the photodetector readout electronics, spatial resolution of the photoelectron hit positions, and75

contributions to time resolution other than the photodetector TTS.76

3. Kinematics and Timing of Signal and Background events77

3.1. Kinematics of the 0νββ-decay signal78

We simulate the kinematics of 0νββ-decay events using a custom Monte Carlo with momentum79

and angle-dependent phase space factors for 0νββ-decay [22]. The spectrum in kinetic energy of80

one electron in 0νββ-decays of 130Te is shown in Figure 1.81

The distribution in cos (θ) between the two electrons is presented in the left-hand panel of Fig. 282

(solid line), showing the preference towards a back-to-back topology. The energy sharing between83

the electrons peaks at an equal split, as shown in the right-hand panel of Fig. 2 (solid line).84
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Figure 1: The spectrum in kinetic energy of one of the electrons in 0νββ- decays of 130Te (endpoint 2.53 MeV). The vertical dashed line indicates
the Cherenkov threshold in the liquid scintillator of the detector model. Single electrons from 8B solar neutrinos that are potential background to
the 0νββ-decay search are close in energy to the endpoint and will be above the Cherenkov threshold.

3.2. Comparison to SM 2νββ-decay85

Figure 2 also shows the angular separation and energy sharing of the two electrons in SM 2νββ-86

decay events with the total kinetic energy of the electrons above 95% of the Q-value, found using87

the same Monte Carlo generator but with SM phase space factors [22]. As seen from the plot, the88

electron angular correlations for 0νββ-decay are slightly more back-to-back than those from 2νββ-89

decay due to a contribution from the neutrino wave-functions even at vanishingly small energies90

of the neutrinos [22]. The energy sharing is essentially identical.91

3.3. Production and Selection of Cherenkov light by electrons from 130Te 0νββ-decays92

Figure 1 also shows the threshold for the production of Cherenkov light. Examining the kine-93

matics for one of the electrons from 130Te 0νββ-decay with an equal energy split, the 1.26 MeV94

electron travels on average a total path length of 7.1±0.9 mm, has a distance from the origin of95

5.6±1.0 mm in 26 ±4 ps, and takes 24±3 ps to drop below Cherenkov threshold. We note that due96

to scattering of the electron, the final direction of the electron before it stops does not match the97

initial direction; however, the scattering angle is small at the time that the majority of Cherenkov98

light is produced.99

Figure 3 shows distributions from the detector simulation for 1000 130Te 0νββ-decay events at100

the center of the detector. The left-hand panel compares the time of PE arrival at a photodetector101

anode for Cherenkov and scintillation light, assuming a TTS in the photodetector of 100 ps. A102

selection of the PEs with relatively early arrival time creates a sample with a high fraction of103

directional Cherenkov light, designated as the ‘early PE’ sample.104

The right-hand panel shows the composition of the early PE sample, selected with a time cut105

of 33.5 ns (vertical line on plot). On average each 130Te 0νββ-decay produces 62.8±0.3 PEs in the106

early PE sample, with an RMS width of 8.9 PEs from event-by-event fluctuations. On average the107

early PE sample consists of 28.6±0.2 scintillation PEs and 34.2±0.2 Cherenkov PEs, with RMS108

distribution widths of 5.2 and 7.3 PEs respectively.109
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Figure 2: Left: The distribution in the cosine of the angle between the two electrons for 0νββ-decays (solid red line). Right: The fraction of the total
energy carried by one of the two electrons in 0νββ-decays (solid red line). In both panels the dashed black line is the corresponding distribution for
SM 2νββ-decay events with the total kinetic energy of the electrons above 95% of the Q-value.
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Figure 3: Left: PE arrival times after application of the photo-detector TTS of 100 ps for the default simulation of 130Te 0νββ-decay produced at
the center of the detector. Scintillation PEs (blue solid line) are compared to Cherenkov PEs (red dotted line). The vertical line at 33.5 ns indicates
the time cut for the selection of the early PE sample. Right: Composition of the early PE sample (to the left of the vertical line in the left-hand
panel): the number of Cherenkov (dashed red line), scintillation (dotted blue line), and total (solid black line) PEs per event.

3.4. 8B solar neutrino background110

For a detector similar to our model, the 8B solar neutrino background is significant due to the111

large total mass of the liquid scintillator in the active region. Electrons from elastic scattering112

of 8B solar neutrinos have nearly a flat energy spectrum around the Q-value [23]. We simulate113

8B background as a single monochromatic electron with energy of 2.53 MeV (Q-value of 130Te).114

A 2.53 MeV electron travels a total path length of 15.5±2.0 mm, has a distance from the origin of115

12.6±2.2 mm in 55±7 ps, and takes 49±2 ps to drop below Cherenkov threshold.116

The shape of scintillation and Cherenkov PE timing distributions in 8B events match very117

closely the shape of corresponding distributions for 0νββ-decay events shown in Fig. 3. The elec-118

tron path length is too short compared to the detector size to introduce any noticeable difference119

in the shape of PE timing distributions between a single electron from 8B events and two electrons120

from 0νββ-events.121

On average each 8B neutrino event produces 69.9±0.3 PEs in the early PE sample, with an122

RMS distribution width of 9.7 PEs due to event-by-event fluctuations. On average the early PE123
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Figure 4: Left: A ‘zoomed-in’ view of the PEs arrival times of signal and background events produced at the center of the detector. The distribution
in time for Cherenkov PEs from 130Te 0νββ-decay is shown in solid black; Cherenkov PEs from 8B solar neutrino background are shown in
dashed red. PEs from scintillation are shown as the blue solid line. The line at 33.5 ns indicates the cut for the early PE sample selection. Right:
Composition of the early PE sample: the number of Cherenkov PEs (dashed red line), scintillation PEs (dotted blue line), and total (solid black
line) PEs per event.

sample consist of 27.6±0.2 scintillation and 42.3±0.3 Cherenkov PEs, with event-by-event fluctu-124

ations contributing an RMS width of 5.2 and 8.2 PEs, respectively. The total energy deposited in125

the detector in 8B solar neutrino and 0νββ-decay events is the same. This leads to nearly the same126

amount of scintillation light produced in the detector.127

The number of Cherenkov photons is ∼10% higher for 8B neutrino events compared to 0νββ-128

decay events. This is because Cherenkov light in 8B neutrino interactions is being produced129

by a single electron, while the same kinetic energy is split between two electrons in 0νββ-decay130

events 1.131

4. Event Topology and the Spherical Harmonics Analysis132

We have developed a method based on a spherical harmonics decomposition to discriminate the133

topologies of 0νββ-decay two-electron events and 8B-neutrino single-electron events. The identi-134

fication of the Cherenkov photon clusters is challenging due to the smearing of the characteristic135

ring pattern by multiple scattering of the electrons and by the smallness of the Cherenkov signal136

relative to the large amount of uniformly-distributed scintillation light. We find that performing137

the spherical harmonics analysis on the smaller early PE sample, which has a relatively high frac-138

tion of Cherenkov PEs, can discriminate 0νββ-decay signal events from backgrounds, although a139

high rejection factor will require a slower scintillator than in the model.140

4.1. Topology of 0νββ-decay and 8B Events141

With 130Te as the active isotope, all background from 8B solar neutrinos will have the single142

electron above Cherenkov threshold in the liquid scintillator. Also, a large fraction of 0νββ-decay143

signal events will have both electrons above Cherenkov threshold.144

In some cases only one Cherenkov cluster is produced in 0νββ-decay signal events. This hap-145

pens either when the angle between the two 0νββ-decay electrons is small and Cherenkov clusters146

1We do not use the small difference in the total number of PEs in the early PE sample due to the Cherenkov PE contribution to separate
0νββ-decay signal from 8B background. However, it may provide an extra handle on signal-background separation in a multivariate analysis when
combined with directional and topographical information.
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overlap or when the energy split between electrons is not balanced, causing one electron to be147

below Cherenkov threshold. Such signal events cannot be separated from background based on148

the topology of the distribution of Cherenkov photons on the detector surface. However, the di-149

rectionality of the electron that is above Cherenkov threshold can still be reconstructed. This150

directionality information may allow for suppression of 8B events based on the position of the151

sun [24].152

For the purpose of illustrating the spherical harmonics analysis concept, we first consider two153

distinct topologies: a) two electrons produced back-to-back at an 180◦ angle; and b) a single154

electron. Figure 5 shows an idealized simulation of these two topologies for a total electron energy155

of 2.53 MeV. In order to emphasize ring patterns formed by Cherenkov photons, the electron156

multiple scattering process is turned off in this idealized simulation and a photocathode QE of 30%157

is used for both Cherenkov and scintillation photons. Here the single-electron event represents an158

idealized 8B event topology and the two-electron events represent two special cases of an idealized159

0νββ-decay topology.160
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Figure 5: Top panels: Idealized event displays, with multiple scattering turned off and at the center of the detector, of: (top left) a signal event
with two 1.26 MeV back-to-back electrons; and (top right) a 8B neutrino background event with single 2.53 MeV electron. A 30% QE is assumed
for both Cherenkov PEs (triangles) and scintillation PEs (dots). Bottom panel: The normalized power spectrum S ` for the Cherenkov PEs only,
calculated event-by-event for 100 events for the two above topologies. The heights of the vertical bars correspond to event by event variation
(±1 σ).
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4.2. Description of the Spherical Harmonics Analysis161

The central strategy of the spherical harmonics analysis is to construct rotationally invariant162

variables that can be used to separate different event topologies. To account for the fluctuation of163

the number of PEs from event to event, we use a normalized power, S `, defined in Appendix A.164

The bottom panel in Fig. 5 compares the normalized power spectra for the two representative165

event topologies in the idealized case of no multiple scattering and with a 30% quantum efficiency166

for both Cherenkov and scintillation photons. In this case, the method gives a good separation167

between the two event topologies.168

At energies relevant to 0νββ-decay, multiple scattering makes the Cherenkov rings fuzzy. In169

most cases, ∼1 MeV electrons produce randomly shaped clusters of Cherenkov photons around170

the direction of the electron track. Examples of 130Te 0νββ-decay and 8B events simulated with171

multiple scattering, but still at the center of the detector, are shown in Fig. 6. 130Te events are gen-172

erated based on the phase factors described in [22]. 8B events are implemented as monochromatic173

electrons with the initial direction along the x-axis. The default QEs of 12% for Cherenkov light174

and 23% for scintillation light have been applied. Figure 6 shows early PEs that pass the 33.5 ns175

time cut.176

In this more realistic example, the uniformly distributed scintillation light makes it difficult to177

visually distinguish the event topology. The power spectra shown in the bottom panel of Fig. 6 are178

different only at `=0 and `=1. We use this difference to separate 0νββ-decay signal from 8B back-179

ground events.180

As expected, we find that 0νββ-decay events become indistinguishable from single-track events181

when the angle between the two electrons is small and two Cherenkov clusters overlap. Event182

topologies of 0νββ-decay and 8B events are also very similar when only one electron from 0νββ-183

decay is above the Cherenkov threshold. The spherical harmonics analysis is most efficient for184

events with large angular separation between the two electrons and when both electrons are above185

Cherenkov threshold [25].186

5. Performance of the Spherical Harmonics Analysis in Separating 0νββ-decay from 8B Background.187

The separation of signal and background comes almost entirely from the first two multipole188

moments, `=0 and `=0. However, higher multipole moments are needed for the event-by-event189

normalization of the power spectrum S ` (Eq. A.6). In the following, we choose to calculate the190

power spectrum s` up to `=3 and use only the normalized variables S 0 and S 1, where the normal-191

ization is given by192

S 0,1 =
s0,1∑3
l=0 s`

. (1)193

As discussed below, a linear combination of S 0 and S 1 can be used to separate 0νββ-decay and194

8B events.195

5.1. Central events with no uncertainty on the vertex position196

To illustrate the technique, we initially evaluate the performance of the spherical harmonics197

analysis in the idealized case of events at the center of the detector with perfect reconstruction of198

the event vertex position.199
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Figure 6: Top panels: Event displays with multiple scattering and at the center of the detector for: (top left) a signal event with two 1.26 MeV
back-to-back electrons; and (top right) a 8B neutrino background event with a single 2.53 MeV electron. Only early PEs are shown. The model
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Comparisons of S 0 and S 1 distributions for 82Se and 130Te 0νββ-decay signal and correspond-200

ing 8B background events are shown in Fig. 7. Both variables, S 0 and S 1, provide a noticeable201

separation between signal and background. 82Se 0νββ-decay events are shown to demonstrate that202

in the energy range of interest, the S ` do not strongly depend on the energy deposited in the detec-203

tor, i.e. information contained in the normalized power spectrum is complimentary to the energy204

measurements.205

The left-hand panel in Fig. 8 compares scatter plots of the first two components of the power206

spectrum, S 0 and S 1, for signal and background. In order to illustrate the separation between 130Te207

and 8B events, a linear combination of variables S 0 and S 1 is constructed as follows 2.208

First, we perform a linear fit to S 0 = A · S 1 + B, of all points on the scatter plot, as shown by209

the dashed line in the left-hand panel in Fig. 8. A 1-dimensional (1-D) variable S 01 is defined210

2A multi-variate event-by-event analysis will have more discriminatory power than this simple 1-dimensional separation, but in the absence of
a real detector is a waste of time [26].
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Figure 7: Results from the idealized case of central events at the detector origin( i.e. perfect vertex reconstruction); a time cut of 33.5 ns on the
PE arrival time is applied. The default QE and 100% photo-coverage are used in the simulation. (Left) S 0 and S 1 (right) distributions for 1000
simulated 0νββ-decay signal and 8B background events. Two different isotopes are compared, 130Te and 82Se. The corresponding kinetic energies
of background 8B neutrino single electrons are 2.53 MeV and 3.00 MeV.

as S 01 = S 1 · cos(θ) + S 0 · sin(θ), where tan(θ)=A. The right-hand panel in Fig. 8 compares211

distributions of S 01 for 0νββ-decay signal and 8B background. These 1-D histograms for S 01212

represent the projection of the points on the scatter plot onto the fitted line.213

To quantify the separation between the signal and background we calculate the area of the214

overlap in the S 01 distributions, Ioverlap. There is no separation if Ioverlap=1, and there is a 100%215

separation if Ioverlap=0. Figure 8 shows the separation of this simple algorithm based on the shape216

of the early PE sample; the overlap between signal and background is Ioverlap=0.52. At an efficiency217

for the signal of 70% we find a rejection factor of 4.6.218
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Figure 8: Left: Scatter plot of the moments S 0 versus S 1 for a simulation of 1000 signal (red crosses) and background (blue triangles), for the
idealized case of central events assuming perfect reconstruction of the vertex position. A time cut of 33.5 ns on the PE arrival time is applied. The
default QE and 100% photo-coverage is used in the simulation. The black dashed line corresponds to a linear fit for S 01. Right: Comparison of the
S 01 distribution between signal (red solid line) and background (blue dashed line). Ioverlap=0.52.

5.2. Events in a fiducial volume with an uncertainty on the vertex position219

We find that in the default detector model the separation power of the spherical harmonics220

analysis is significantly reduced when event vertex is not at the center of the detector and vertex221

resolution is taken into account.222
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For the general case, even significantly delayed scintillation photons can reach the side of the223

detector that is closer to the vertex much earlier than Cherenkov photons traveling to the opposite224

side of the detector. The time cut thus has to take into account the total distance traveled by225

each individual photon. In order to select early PE sample we use a differential cut of ∆t =226

tphot
measured − tphot

predicted <1 ns, where tphot
measured is the measured time of the photon hit and tphot

predicted is the227

predicted time based on the reconstructed vertex position.3228

In general, the S 1 component of the spherical harmonics power spectrum is higher for asym-229

metric distributions and lower for symmetric distributions (e.g., compare the back-to-back and230

single electron topologies in Fig. 5). If a vertex is shifted in the direction opposite to the track231

of the electron, the differential time cut selects more scintillation photons that are emitted in the232

direction of the electron track. Scintillation photons would enhance the forward asymmetry of233

the early PE sample, which in turn would move S 1 to higher values. Moreover, S 1 = 0 for a234

distribution with perfect symmetry with respect to the center of the sphere. If a vertex is shifted235

in the same direction as the direction of the electron, the differential time cut selects more scintil-236

lation photons that are emitted in the direction opposite to the electron track. The asymmetry of237

Cherenkov PEs would then be counter-balanced by scintillation PEs, which in turn, would move238

S 1 to lower values.239

We simulated 1000 signal and background events that have their vertices uniformly distributed240

within a fiducial volume of R < 3 m, where R is the distance between the event vertex and the cen-241

ter of the detector, with a vertex resolution of 5.2 cm based on our earlier study of reconstruction[9].242

The uncertainty on the vertex reconstruction is implemented as smearing along x, y, and z direc-243

tions with three independent Gaussian distributions of the same width, σx = σy = σz =3 cm.244

Figure 9 shows the performance of the spherical harmonics analysis under these more realistic245

assumptions. The overlap between signal and background is Ioverlap=0.79, which means that the246

separation is 52% worse than in an idealized scenario shown in Fig. 8. The spherical harmonics247

analysis brings little separation between signal and background in our default detector model after248

the chromatic dispersion and vertex resolution are taken into account. However, properties of the249

liquid scintillator can be adjusted to improve the performance of the spherical harmonics analysis.250

In the following we show that a single change in the scintillation rise time improves the separation.251

5.3. Importance of the liquid scintillator properties252

The strong dependence on the vertex resolution can be addressed by choosing a liquid scintil-253

lator mixture with a more delayed emission of scintillation light with respect to Cherenkov light.254

With a larger delay in scintillation light, a higher fraction of Cherenkov light can be maintained255

in the early PE sample even if the vertex position is mis-reconstructed. In addition, if the fraction256

of scintillation light is small compared to Cherenkov light, the distortions in the uniformity of257

the scintillation PE due to a shifted reconstructed vertex position does not significantly affect the258

spherical harmonics power spectrum. Furthermore, the effects due to chromatic dispersion can259

be addressed by using liquid scintillators with a narrower emission spectrum [9], or red-enhanced260

photocathodes [9].261

While the default detector model assumes a scintillation rise time of τr =1 ns, rise times up262

to τr =7 ns can be achieved (see Ref. [27]). As a test we increased the scintillation rise time263

3tphot
predicted = Lphot/vphot , where the Lphot is the distance from the vertex to the photon hit on the detector sphere and vphot is the photon group

velocity. Chromatic dispersion thus reduces the efficiency of the time cut in selecting early PE sample with high fraction of Cherenkov PE.
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Figure 9: Left: Scatter plot of S 0 versus S 1 for a simulation of 1000 signal (red crosses) and background (blue triangles) events. Event vertices
are uniformly distributed within the fiducial volume, R < 3 m. The vertex is smeared with 5.2 cm resolution. A differential cut of ∆t = tphot

measured −

tphot
predicted <1 ns is applied to select the early PE sample. The default QE and 100% photo-coverage are used in the simulation. The black dashed

line corresponds to a linear fit to define the 1-D variable S 01. Right: A comparison of the S 01 distribution between signal (red solid line) and
background (blue dashed line). Ioverlap=0.79.

parameter to τr =5 ns in the detector model, with all other parameters kept the same.4 Figure 10264

shows the overlap between signal and background is significantly decreased to Ioverlap=0.64, i.e.265

the separation is 23% worse than in the idealized scenario shown in Fig. 8 and 23% better than in266

the default detector model shown in Fig. 9.267
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Figure 10: The scintillation rise time constant is increased to τr =5 ns compared to τr =1 ns in the default detector model. Left: Scatter plot of S 0
versus S 1 for a simulation of 1000 signal (red crosses) and background (blue triangles) events. Event vertices are uniformly distributed within the
fiducial volume, R < 3 m. Vertex is smeared with 5.2 cm resolution. Differential cut of ∆t = tphot

measured − tphot
predicted <1 ns is applied to select early PE

sample. The default QE and 100% photo-coverage is used in the simulation. Black dashed line corresponds to a linear fit to define 1-D variable S 01
(see text for details). Right: Comparison of the S 01 distribution between signal (red solid line) and background (blue dashed line). Ioverlap=0.64.

4Usually, longer rise time implies lower light yeild. Here we keep exactly the same light yeild as in the default detector model, assuming future
possible advances in liquid scintillator technology [28].
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Figure 11 shows the efficiency for 0νββ-decay signal and the rejection factor for 8B neutrino268

background for the default model (left-hand panel) and for the slower scintillator with a 5-ns269

risetime (right-hand panel) as a function of the S 01 discriminant. We find a rejection factor of 2270

for the default case at 70% efficiency for signal. The rejection is increased to a factor of 3 for the271

5-nsec risetime scintillator.272
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Figure 11: The efficiency for 0νββ-decay signal (red left-hand-scale) and the rejection factor for 8B neutrino background (blue right-hand-scale)
versus S 01 for the default model (left panel) and a liquid scintillator with a 5-nsec risetime (right panel).

6. Conclusions273

We consider the use of large-area photodetectors with good time and space resolution in kiloton274

scale liquid scintillator detectors to suppress background coming from 8B solar neutrino interac-275

tions. Using a default model detector with parameters derived from present practice, we show276

that a sample of detected photons enriched in Cherenkov light by a cut on time-of-arrival contains277

directional information that can be used to separate 0νββ-decay from 8B solar neutrino interac-278

tions. The separation is based on a spherical harmonics analysis of the event topologies of the279

two electrons in signal events and the single electron in the background. The performance of the280

technique is constrained by chromatic dispersion, vertex reconstruction, and the time profile of281

the emission of scintillation light. The development of a scintillator with a rise time constant of282

at least 5 ns would allow a Cherenkov-scintillation light separation with a background rejection283

factor for 8B solar neutrinos of 3 and an efficiency for 0νββ-decay signal of 70%.284
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A. Appendix A300

A.1. Defining the Power Spectrum301

Let the function f (θ, φ) represent the distribution of the photo-electrons (PE) on the detector302

surface. The function f (θ, φ) can be decomposed into a sum of spherical harmonics:303

f (θ, φ) =

∞∑
`=0

∑̀
m=−`

f`mY`m(θ, φ), (A.1)304

where Y`m are Laplace’s spherical harmonics defined in a real-value basis using Legendre poly-305

nomials P` [29]:306

Y`m =


√

2N`mPm
` (cos θ) cos mφ, if m > 0

N`m =

√
(2`+1)

4π
(`−m)!
(`+m)! , if m = 0

√
2N`|m|P

|m|
` (cos θ) sin |m|φ, if m < 0

(A.2)307

where the coefficients f`m are defined as308

f`m =

∫ 2π

0
dφ

∫ π

0
dθ sin θ f (θ, φ)Y`m(θ, φ). (A.3)309

Equation A.4 defines the power spectrum of f (θ, φ) in the spherical harmonics representation,310

s`, where l is a multipole moment. The power spectrum, s`, is invariant under rotation.311

s` =

m=∑̀
m=−`

| f`m|2 (A.4)312

The event topology in a spherical detector determines the distribution of the PE’s on the detector313

sphere, and, therefore, a set of s`’s. These values can serve as a quantitative figure of merit for314

different event topologies. The rotation invariance of the s`’s ensures that this figure of merit does315

not depend on the orientation of the event with respect to the chosen coordinate frame.316

The sum of s`’s over all multipole moments equals to the L2 norm of the function f (θ, φ):317

∞∑
`=0

s` =

∫
Ω

| f (θ, φ)|2dΩ. (A.5)318

The normalized power spectrum is thus:319

S` =
s`∑∞
`=0 s`

=
s`∫

Ω
| f (θ, φ)|2dΩ

, (A.6)320
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and can be used to compare the shapes of various functions f (θ, φ) with different normaliza-321

tions. As the total number of PEs detected on the detector sphere fluctuates from event to event322

we use the normalized power S`.323

A.2. Spherical Harmonics Analysis and Off-center Events324

In general, events with the same event topology result in the same the power spectrum S ` only if325

events originate in the center of the detector. In order to compare the spherical harmonics for events326

with verticies away from the center, a coordinate transformation for each photon hit is needed. The327

necessary transformation applied for each PE within an event is illustrated in Fig. A.12. The solid328

circle in Fig. A.12 has a radius R and shows the actual detector boundaries. The dotted circle329

shows a new sphere with the same radius R, which now has the event vertex in its center. The330

radius vector of each PE is stretched or shortened to its intersection with this new sphere using the331

transformation, ~r,PE = ~a
|~a| · R, where ~r,PE is a new radius vector of a PE and ~a = ~rPE − ~rvtx with ~rPE332

and ~rvtx being radius vectors of the PE and the vertex in the original coordinates, respectively.333

O

O'
vtxr

hitr
a

hit
'r

Figure A.12: The coordinate transformation which is applied to events that are off-center. The solid circle schematically shows the actual detector
boundaries. The dotted circle shows a new sphere of radius R=6.5 m with the event vertex position in the center. The radius vector of each photon
hit is stretched or shortened until the intersection with this new sphere using the transformation ~r,hit = ~a

|~a| ·R, where ~r,hit is a new radius vector of the
photon hit, R is detector sphere radius, and ~a = ~rhit − ~rvtx with ~rhit and ~rvtx being the radius vectors of the photon hit and vertex position in original
coordinates, respectively.
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