Preliminary Feasibility Study of a Photodetector with 10 Picosecond Time Resolution
for a Fast-Timing Subsystem in the ATLAS Detector at the LHC
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Motivation and Introduction
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area and fast timing. They are an excellent candidate for fast timing
at the LHC.

To handle the large particle fluxes, the detector needs to be
pixelated with pixels sufficiently small such that each pixel has a small
number of hits per bunch crossing. This can be accomplished in
LAPPD’s with the “Inside-Out” configuration, diagrammed below.

In the ATLAS collaboration, the High Granularity Timing
Detector (HGTD) project is attempting to put fast-timing in this
region. Assuming this project, | computed the necessary pixel sizes
with a Pythia simulation. The results are shown in the table.

As a model for an inside-out LAPPD, we placed a similar
photodetector coupled to a 10 nm, grounded layer of Nickel
Chromium deposited onto a ceramic plate. Beneath this | placed a
printed circuit board with different sized pads, each connected to an
SMA readout. A pulsed 405 nm laser was fed through a fiber optic
attached to a motorized stage that allowed for position adjustments.
This setup is shown in Figure 3.
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Figure 2: A schematic of an inside-out LAPPD.




