Hannah Tomio
August 18, 2015

MCP Scrubber Monitoring

1 Introduction

The scrubber is a device that bombards microchannel plates (MCP’s) with electrons, thus
“scrubbing” them. This is done both to stabilize the gain of the MCPs and to, as the name
would suggest, clean them of any residue. As detailed by Tyler Lutz in his collection of
design documentd] a mercury vapor bulb and a nichrome layer on a fixed MCP serve as
the scrubber’s electron source. The number of electrons is then amplified by the fixed MCP.
The MCPs that are being scrubbed (the scrubbees) are situated between the fixed MCP
and an anode. A voltage is applied between the nichrome layer and the anode to accelerate
the stream of electrons towards the scrubbees. A uniform magnetic field is created with two
pairs of Helholtz coils, placed orthogonally to each other at the sides of the MCP’s in order
to ensure a uniform spread of electrons.

2 Measurements

Over the course of the scrubber’s scrubbing cycle, we would like to take several measure-
ments: temperature, pressure, and the residual gases present. This lab currently has several
thermocouples, a Pfeiffer Compact FullRange Gauge PKR 251, and an SRS Residual Gas
Analyzerf)] available to take these measurements, as well as a Raspberry Pi Model Bff to
control and log these devices and their outputs. Instead of a GertboardE], however, we will
be using a LabJack U6 Prd| to extend the analog inputs of the Pi.

3 Components

We will be using the following:

Pfeiffer Compact FullRange Gauge PKR 251
This is a gauge designed for vacuum measurement in the pressure range of 521079 to
1000 mbarr. We will use it to measure the pressure inside the scrubber.

Raspberry Pi Model B
The Raspberry Pi is a low cost, low power computer running a Debian-based Linux
distribution. It can be remotely accessed via ssh, and will run the monitoring program.

! psec.uchicago.edu/library/doclib/documents/230

2www.pfeiffer-vacuum.com/en/products/measurement/activeline/activeline-gauges/
?detailPdoId=16099

3 www.thinksrs.com/products/RGA.htm

4 https://www.raspberrypi.org/documentation

® https://www.sparkfun.com/products/retired/11773

6 http://labjack.com/ub

psec.uchicago.edu/library/doclib/documents/230
www.pfeiffer-vacuum.com/en/products/measurement/activeline/activeline-gauges/?detailPdoId=16099
www.pfeiffer-vacuum.com/en/products/measurement/activeline/activeline-gauges/?detailPdoId=16099
www.thinksrs.com/products/RGA.htm
https://www.raspberrypi.org/documentation
https://www.sparkfun.com/products/retired/11773
http://labjack.com/u6

LabJack U6 Pro
This is a multifunction DAQ with 14 analog inputs with ranges of +10, £1, +0.1,
and £0.01 volts and a 22-bit effective resolution. Thus it can directly measure raw
thermocouple signals. While LabJack provides Windows software to easily log inputs,
it also provides a Linux driver and Python module (LabJackPython) which we will be
using to communicate with the U6 from the Raspberry Pi.

CB37 Terminal Board
The CB37 boardﬂ provides screw terminals for the DB37 connector on the LabJack
U6, thus providing screw terminals for all 14 analog inputs.

5 K-Type Surface-mount Thermocouples SA1XL
These thermocouplesﬂ have response times of less than 0.15 seconds and temperature
ranges of —73 degrees Celsius to 315 degrees Celsius. We will use them to measure the
temperature of the scrubber.

OMEGABOND 400 Cement
A high temperature, air set cementﬂ rated to 1427°C, for adhering the thermocouples
to the scrubber.

ACDC Converter
This AC to DC wall mounted adapter{T_UI provides 24 volts (at 0.5 amps) and will be
used to power the Pfeiffer Compact FullRange Gauge.

4 Infrastructure and Maintenance

4.1 Setup
The setup of this system is very simple — only minor soldering will be necessary.

1. Connect the CB37 to the Labjack via the DB37 connector on the Labjack.
2. Connect the LabJack to the Raspberry Pi via a USB A-to-B cord.

3. Connect the thermocouples to the screw terminals of the CB37, with their probes
cemented to the scrubber where needed. Make sure they are in the correct orientation!

4. Cut the connector end off of the Pfeiffer gauge sensor cabld'] and strip to reveal the
wires within.

5. Pins 4 and 5 (yellow wire and grey wire, respectively) must go to the ACDC wall
adapter, with pin 4 going to the supply and pin 5 going to the ground. Pins 2 (brown
wire) and 3 (green wire) must connect to the CB37, with pin 2 going to the analog
input and pin 3 going to the gound. Pin 1 (white wire) and the shield should go to
ground as well. Soldering a PCB board to help connect these wires is a good idea.

"http://labjack.com/catalog/cb37-terminal-board-rev-21

Shttp://www.omega.com/pptst/SA1XL.html

9 http://www.omega.com/pptst/SA1XL.html

YOhttp://www.digikey.com/product-detail/en/SWI12-24-N-SC/T1284-ND/5052006

Uhttps://www.pfeiffer-vacuum.com/en/products/measurement/activeline/
activeline-accessories/7detailPdoId=16130

http://labjack.com/catalog/cb37-terminal-board-rev-21
http://www.omega.com/pptst/SA1XL.html
http://www.omega.com/pptst/SA1XL.html
http://www.digikey.com/product-detail/en/SWI12-24-N-SC/T1284-ND/5052006
https://www.pfeiffer-vacuum.com/en/products/measurement/activeline/activeline-accessories/?detailPdoId=16130
https://www.pfeiffer-vacuum.com/en/products/measurement/activeline/activeline-accessories/?detailPdoId=16130

6. Connect the Raspberry Pi to the internet via the ethernet port and plug in the Rasp-
berry Pi’s power supply.

Currently the system is not capable of running the RGA, however configuring it to do so
shouldn’t be too difficult. You must connect the pi to the RGA with a USB to RS232 cable
(provided in the electronics box) and adapt Eric Spieglan’s “rgadev.py” (in the Margherita-
Code folder) code.

RS232 to RGA To Power Supply To Pfeiffer Gauge

To Ethemet

:

POWER

STATUS

oouoom

0000 0000 [O000| (O000| (0000 ([O000| [oOo0

ooon oooo| [ooog| jooog| jooog| jooog| [Eooo|
0000| [OO00| [O000| [OOoo0
oooo| [ooog| jooog] o

o

“To AC-DC Converter

To Thermocouples

Figure 1: Diagram of the setup inside the electronics box

4.2 Logging

The Raspberry Pi runs a Python program called “scrubberpi.py” to read voltages from the
LabJack, convert to temperature or pressure measurements, and record these measurements
in a text file. Conveniently, LabJack provides a Python module to connect to the UG,
which our logging program uses. The conversion equations and their constants for K-type
thermocouples can be found at the National Institute of Standards and Technology’s website
srdata.nist.gov/its90/main/. The code for this program can be found in the appendices
of this manual.

1. To start the logging program, first ssh into the Raspberry Pi. For this particular pi,

srdata.nist.gov/its90/main/

4.3

Temperature (Celsius)

the ip address is 205.208.20.42, the username is “pi”, and the password is “forceevanid-
megapolisconversantly”.

Using the console of the Raspberry pi, go to the folder “ScrubberCode” and call “sudo
python scrubberpi.py”. Any errors that occur will be printed to the console. This
program will run indefinitely, unless you do a keyboard interrupt, kill the process
directly, or the LabJack becomes disconnected.

If you would like to read the measurements as they are logged, you should run the
program in the background instead (call “sudo python scrubberpi.py &”), then go to
the logs folder and call “tail -f nameoffile”. The files will be named according to this
format: “temp-mm-dd-yy.txt” and “pressure-mm-dd-yy.txt” with the “mm” being the
month, “dd” being the day, and “yy” being the year.

To graph the data, there is a basic matplotlib plotter program included in the appen-
dicies. The data can also be graphed in many other ways (MATLAB, etc). To use the
included matplotlib program, you must first combine the data files into one file (if it
is not already one file). Use the combine_files program, but change the names of the
files in the code to the names of the files you would like to combine. Then you may
use the pressure_plotter or temp_plotter functions to plot your graphs.

Thermocouples Pressure

160

0.000006

1a0p 0.000005

120+
0.000004

100} E

5 0.000003 -

3

2

2

:
0.000002}

80 -

60

a0l 0.000001

20 0.000000

0 100000 200000 300000 400000 500000 600000 0 100000 200000 300000 400000 500000 600000
Time (seconds) +1.4369e9 Time (seconds) +1.4369e9

Figure 2: Plots of temperature and pressure from a vacuum bakeout

Maintenance

After the setup of this system is complete and the final configuration is established, the
system will be housed in an aluminum enclosure with the wires properly strain relieved.
Except for checking the secure connections of the wires, there is little maintenance that
needs to be done. The code and any necessary modules can be found on the project website,
at psec.uchicago.edu/Code, and of course on the Raspberry Pi itself.

Appendices

Listed here is all of the code used to run the monitoring system.

4

psec.uchicago.edu/Code

O © 00 g O Uk W

—_

11

13
14
15
16
17
18
19

20
21
22

23
24

25
26

27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44

A Main Code

This code measures and logs temperature from 5 thermocouples and pressure
from a Pfeiffer PK—251 gauge. The output files will be located in the logs
folder. The logging program can be stopped with a keyboard interrupt, but
will catch other errors and print them to console.

import u6

import time

import pfeifferGauge
import rgadev

import typeKthermocouple

These describe the input channels on the labjack in use. Channels 0—5 are
reading different thermocouples

and channel 6 is reading from the Pfeiffer gauge.

pgaugeChannel = 6

thermoChannel= [0, 1, 2, 3, 4, 5]

Declare a labjack U6 object from the w6 module
labJack = u6.U6()

This code will run indefinitely , it can be quit with a keyboard interrupt (
Ctrl C)
while True:
try:
Open the files the measurements will be logged in. These are located in
the logs folder
temp = open(’./logs/temp—{}.txt . format (time.strftime ("%m-%d-%y’)), ’at’)
pressure = open(’./logs/pressure —{}.txt’.format (time.strftime ("%m-%d—%y’))
a7a+7)

The cold junction temperature in celsius, compensating for the screw
junction temperature
coldJunctionTemp = labJack.getTemperature() + 2.5 — 273.15

temps = []
for a in thermoChannel:

For each thermocouple, get the it’s wvoltage in millivolts

tvolt = ((labJack.getAIN(a, resolutionIndex = 12, gainIndex = 3) % 1000)

+
typeKthermocouple . tempToVolts (coldJunctionTemp))

temps.append (str (typeKthermocouple . voltsToTemp (tvolt)))
entry = (’,’.join (temps) + ’,’ + str(time.time()) + ’\n’)
temp. write (entry)

Get the pressure gauge’s wvoltage
pvolt = labJack.getAIN (pgaugeChannel, resolutionIndex = 12, gainlndex = 0)
current_pressure = pfeifferGauge.voltsToPressure (pvolt)
pressure.write(’{},{}\n’.format(current_pressure, time.time()))
time. sleep (1)

except Exception as e:
This will catch all exceptions and simply print them to console,

allowing

45
46
47
48
49
50
51

—_

O J O UL i W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

the program to indefinitely
print e
pass
finally :
Upon exiting , the file descriptors must be closed
temp. close ()
pressure. close ()

B Thermocouple Module

This module describes the approximate reference functions and inverse
functions for type K thermocouples.The reference functions give the

thermoelectric voltage, E, as a function of temperature, T, where F isin
mV and T is in celsius.The inverse functions give temperature, T, as a

function of the thermoelectric voltage, E, where E is in mV and T is
celsius .

All coefficients are from http://srdata.nist.gov/its90/main/

import math
Coefficieints for reference functions

For —270 degrees C to 0 degrees C
tempToVoltsCoeffl = |
0.0E0,
0.394501280250E—1,
0.236223735980E—4,
—0.328589067840E—6,
—0.499048287770E-38,
—0.675090591730E—10,
—0.574103274280E—12,
—0.310888728940E—14,
—0.104516093650E—16,
—0.198892668780E—19,
—0.163226974860E—22

}

For 0 degrees C to 1372 degrees C
tempToVoltsCoeff2 = |
—0.176004136860E—1,
0.389212049750E—1,
0.185587700320E—4,
—0.994575928740E—-7,
0.318409457190E—-9,
—0.560728448890E—12,
0.560750590590E—15,
—0.320207200030E—18,
0.971511471520E—-22,
—0.121047212750E—-25

)

For 0 degrees C to 1372 degrees C

40| tempToVoltsCoeff3 = |
411 0.118597600000E0,

42| —0.118343200000E-3,
43| 0.126968600000E3

44|]
45
46|# Coefficients for the inverse functions
47
48|# For —200 degrees C to 0 degrees C
49|# For —5.891 mV to 0 mV

50| voltsToTempCoeffl = |

51 0.0E0,

521 2.5173462E1,

53| —1.1662878E0,

54| —1.0833638E0,

55| —8.977354E—-1,

56| —3.7342377E—1,

57| —8.6632643E—2,

58| —1.0450598E—-2,

59| —5.1920577E—4

60| |
61
62|# For 0 degrees C to 500 degrees C
63|# For 0 mV to 20.644 mV

64| voltsToTempCoeff2 = |

65| 0.0E0,

66| 2.508355E1,

67| 7.860106E—2,

68| —2.503131E—-1,

69| 8.31527E—2,

70| —1.228034E-2,

711 9.804036E—4,

72| —4.41303E—5,

73/ 1.057734E—6,

74| —1.052755E-8

750]
76
77\# For 500 degrees C to 1372 degrees C
78| # For 20.644 mV to 54.886 mV

79| voltsToTempCoeff3 = |

80| —1.318058E2,

811 4.830222E1,

82| —1.646031E0,

83| 5.464731E—-2,

84| —9.650715E—4,

85| 8.802193E—-6,

86| —3.11081E-8

871]
88
89| def voltsToTemp (volts):
90 if volts < —5.891:

91 raise Exception(” Undefined_thermocouple_voltage:_voltage_underrange”)
92 if volts > 54.886:

93 raise Exception(” Undefined_thermocouple_voltage:_voltage_overrange”)
94 if —5.891 <= volts < 0:

95 coefficients = voltsToTempCoeffl

96 elif 0 <= volts < 20.644:

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

—_

W N

coefficients = voltsToTempCoeff2

else:

coefficients = voltsToTempCoeff3
temp = 0
power = 0

for d in coefficients:
temp += d x (voltsxkxpower)
power 4= 1

return temp

def tempToVolts(temp):

if temp < —270:

raise Exception(”Undefined_.temperature:_temperature_underrange”)
if temp > 1372:

raise Exception(” Undefined._temperature:_temperature_overrange”)
if —270 <= temp < O:

volts = 0

power = 0

coefficients = tempToVoltsCoeffl

for ¢ in coefficients:

volts += ¢ * (temp *% power)
power 4= 1
return volts
else:
volts = 0
power = 0
constant = 0

coefficients = tempToVoltsCoeff2
for ¢ in coefficients:
volts += (¢ * (temp #*x power))
power 4= 1

extended = (tempToVoltsCoeff3[0] * math.exp(tempToVoltsCoeff3 [1] =
(temp—tempToVoltsCoeff3 [2]) x%2))
return volts + extended

C Pressure Module

This module contains the function that converts the Pfeiffer gauge wvoltage
to pressure, as described the Pfeiffer Gauge PKR—251 manual, as found here

http://edg.uchicago.edu/tutorials/pumps/BG5155BEN. pdf in appendiz A.
If an error occurs, this function raises an exception which will be caught
by the main program and printed to console.

turns gauge voltage into a pressure in mbarr
def voltsToPressure(volts):
if 8.6 < volts <= 9.5:
raise Exception(” Undefined_pgauge_voltage:._voltage_overrange”)
elif volts > 9.5:
raise Exception(”Pgauge.sensor.error:._.Pirani_.defective”)
elif 0.5 <= volts < 1.82:
raise Exception(” Undefined_pgauge_voltage:_voltage_underrange”)

14 elif volts < 0.5:

15 raise Exception(”Pgauge._sensor._error”)
16| pressure = 10xx((1.667xvolts) — 11.33)
17 return pressure

D Plotting

1|# Basic plotter wusing pyplot

2

3|import numpy as np

4|import matplotlib

5| matplotlib.use(Agg’)

6| import matplotlib.pyplot as plt

7

8| def temp_plotter (filename):

9 thermoO, thermol, thermo2, thermo3, thermo4, thermo5, time = np.loadtxt (
filename ,

10 dtype=float , delimiter = ’,’ unpack = True)

11 plt.plot (time, thermo0O, color = ’r’)

’b?)

)

12 plt.plot (time, thermol, color
13 plt.plot (time, thermo2, color g7)
14 plt.plot (time, thermo3, color = 'm’)
('k
gol

15 plt.plot (time, thermo4, color ’

16| plt.plot(time, thermo5, color = ’gold’)
17| plt.title (’Thermocouples’)

18| plt.xlabel (’Time.(seconds)’)

19| plt.ylabel(’Temperature.(Celsius)’)

20 plt.savefig(’Thermocouples’)

21

22| def pressure_plotter (filename):

23 pressure , time = np.loadtxt (filename ,

24 dtype=float , delimiter = ’,’, unpack = True)
25| plt.plot(time, 1/pressure, color = ’blue’)

2| #plt.ylim((0, 0.000006))

27| plt.title(’Inverse_Pressure’)
28| plt.xlabel (’Time.(seconds))

29| plt.ylabel(’Pressure.(mbarr)’)
30| plt.savefig(’Inverse_Pressure’)

32| #use this to combine files of multiple days to plot a full run

33| #you Il have to change the file names directly here

34| def combine_files ():

35| #this opens in append mode, so make sure you delete any files with the same
name before runmning this code

36 fout = open(’totalpressure.txt’, ’a’) #be careful!

37| for fname in (’./logs/pressure —07—15—15.txt’, ’./logs/pressure —07—16—15.txt’
, 7./logs/pressure —07—17—15.txt ",

38 "./logs/pressure —07—18—15.txt’, ’./logs/pressure —07—19—15.txt’

, './logs/pressure —07—20—15.txt) :

39 f = open(fname)

40 for line in f:

41 fout.write (line)

42 f.close ()

43| fout.close ()

44

45| #combine_files ()

46| temp_plotter (’totaltemps.txt’)

47| pressure_plotter (’totalpressure.txt’)

10

	Introduction
	Measurements
	Components
	Infrastructure and Maintenance
	Setup
	Logging
	Maintenance

	Appendices
	Main Code
	Thermocouple Module
	Pressure Module
	Plotting

