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What Is Double Beta Decay?
ZVB_B-d_ecay ~ ~ Ovpp-decay
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Why Is It Interesting?

Ovpp-decay is only possible if the neutrino is its own antiparticle
(i.e. Majorana particle)
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Is neutrino its own antiparticle?
* It is possible because the neutrino has no electric charge
* No other fermion can be its own antiparticle
* It is not only possible, but may be necessary
- origin of matter-antimatter asymmetry in the universe
- why the neutrino mass is so-tiny?



How to Find OvBp-decay?

1) Choose isotope

where OvBp-decay is allowed | g, p2|2.995] 9.2

2) Wait for emission of
two electrons with the
right tfotal energy

Q-value Natural
Isotopes  (Total energy ,,,,hdance,
of 2 electrons), %

MeV

Mo 100]3.03¢v | 9.6 .
Sn 12¢|2.287 | 567
Yo 102820 305
Nol 15013363 | 5.6
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Challenge 1: Decay Probability

Life-time for OvBB-decay is more than > 102 years

This is much longer than the age of the universe

Solution: look at many atoms at the same time
- Avogadro number is large N, = 6x1023

- one ton of material can have >10?” atoms
- even with one ton we are talking about ~10 events per year
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Challenge 2: Background from 2vff3
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Solution: good energy resolution



Challenge 3: Natural Radioactivity

There are 3g U-238 and 9g of Th-232 per ton of rock
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These decays are a factor of ~10! more likely than Ovpp-decay
Solution: good event selection using-proper instruments



Ideal Experiment

1) Large mass (more nuclei at the same time)
2) Good energy resolution (discriminate from 2vpp-decay)

3) Good event selection (natural radioactivity)



Real-Life Experiments Sensitivity
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How to Make a Better Experiment?

Learn what other people have done already

KamLAND experiment:

i e scintiilatop Scintillation light
("easy"” to build big)
- scintillation light is used

for energy measurement

* Produced by a charged particle
in a scintillation media
* Delayed

* I'sotropic
10




How to Make a Better Experiment?

Bring new ideas

Kinetic energy of one electron Cherenkov threshold for n=1.47
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entries per bin

Can We Detect Cherenkov Light?

Scintillation light is more intense
Cherenkov is usually lost in liquid
scintillator detectors
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PEs per event/0.1 ns

PEs per event/0.02

Use Early Light
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First Step Towards a New Experiment

Measuring Directionality in Double-Beta Decay and Neutrino Interactions with Kiloton-Scale
Scintillation Detectors

C. Aberle,! A. Elagin,” H. J. Frisch,> M. Wetstein,” and L. Winslow!

"University of California Los Angeles, Los Angeles, CA 90095, USA
?University of Chicago, Chicago, IL 60637, USA
(Dated: July 23, 2013)

Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino
measurements due to their good energy resolution and scalability to large volumes. The addition of directional
information using Cherenkov light and fast timing would enhance the scientific reach of these detectors, es-
pecially for searches for neutrino-less double-beta decay. In this paper, we develop a technique for extracting
particle direction using the difference in arrival times for Cherenkov and scintillation light, and evaluate several
detector advances in timing, photodetector spectral response, and scintillator emission spectra that could be used
to make direction reconstruction a reality in a kiloton-scale detector.
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What About Lower Energies?

Light yield: Cherenkov vs scintillation

200 1

Noe {ch.erenkov) 0.9
N..(scint.)

0.8

0.7

0.6 %

05 ©
1

04

0.3

0.2

0.1

PEs per event

15

% Q (M"°Cd) =1.4 MeV 2 Q (*Ca) =2.1 MeV



250 F

Events / 0.05

200}
150
100 |

50

What About Lower Energies?
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With 100ps timing the vertex is
constrained within ~6 cm and
the directional information can be
extracted even for ~1MeV electrons
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Summary

Large detector mass is required to search for neutrino-less
double beta decay
- liquid scintillator detectors scale well to large masses

We propose to use Cherenkov light to reconstruct double beta
decay event topology in a kilo-ton liquid scintillator detector

- double beta decay electrons are above Cherenkov threshold
- Cherenkov light travels faster than scintillation light

- early light contains directional information

Fast Photo-Detectors with TTS of ~100ps are needed to
separate Cherenkov from scintillation light (see slides/posters
by the LAPPD team for an example of such pho’ro-de‘rec‘ror)17
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