Measuring directionality in double-beta decay and neutrino interactions with kiloton-scale scintillation detectors

> Andrey Elagin University of Chicago

author list:

Christoph Aberle¹, Andrey Elagin², Henry Frisch², Matthew Wetstein², Lindley Winslow¹ ¹University of California, Los Angeles, ²University of Chicago

TIPP, June 5, 2014

Why Is It Interesting?

 $O_{V\beta\beta}$ -decay is only possible if the neutrino is its own antiparticle (i.e. Majorana particle)

Nuclear Process

Is neutrino its own antiparticle?

- It is possible because the neutrino has no electric charge
- No other fermion can be its own antiparticle
- It is not only possible, but may be necessary
 - origin of matter-antimatter asymmetry in the universe
 - why the neutrino mass is so tiny?

How to Find Ovßß-decay?

1) Choose isotope where $0\nu\beta\beta$ -decay is allowed

2) Wait for emission of two electrons with the right total energy

Challenge 1: Decay Probability

Life-time for $0\nu\beta\beta$ -decay is more than > 10²⁶ years

This is much longer than the age of the universe

Solution: look at many atoms at the same time

- Avogadro number is large $N_A = 6 \times 10^{23}$
- one ton of material can have >10²⁷ atoms
- even with one ton we are talking about ~10 events per year

Challenge 2: Background from 2vBB

Solution: good energy resolution

Challenge 3: Natural Radioactivity

There are 3g U-238 and 9g of Th-232 per ton of rock

These decays are a factor of ~10¹⁶ more likely than $0\nu\beta\beta$ -decay Solution: good event selection using proper instruments

Ideal Experiment

1) Large mass (more nuclei at the same time)

and All

2) Good energy resolution (discriminate from $2\nu\beta\beta$ -decay)

3) Good event selection (natural radioactivity)

Real-Life Experiments Sensitivity

None of the currently running or planned experiments is sensitive to $m_{RB} \sim 10^{-3} \text{ eV}$

How to Make a Better Experiment?

Learn what other people have done already

- KamLAND experiment:
- liquid scintillator
 ("easy" to build big)
- scintillation light is used
 - for energy measurement

Scintillation light

- Produced by a charged particle in a scintillation media
- Delayed
- Isotropic

How to Make a Better Experiment? Bring new ideas

Simulation of ¹¹⁶Cd $0\nu\beta\beta$ event

Cherenkov threshold for n=1.47

Cherenkov light

- Produced by a charged particle in a media whenever particle's speed exceeds the speed of light in that media
- Prompt
- Directional (e.g. ~42° for cosmic muons in water)

Can We Detect Cherenkov Light?

Scintillation light is more intense Cherenkov is usually lost in liquid scintillator detectors

- Longer wavelengths travel faster
- Cherenkov light arrives earlier

Use Early Light

First Step Towards a New Experiment

Measuring Directionality in Double-Beta Decay and Neutrino Interactions with Kiloton-Scale Scintillation Detectors

C. Aberle,¹ A. Elagin,² H. J. Frisch,² M. Wetstein,² and L. Winslow¹

¹University of California Los Angeles, Los Angeles, CA 90095, USA ²University of Chicago, Chicago, IL 60637, USA (Dated: July 23, 2013)

Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino measurements due to their good energy resolution and scalability to large volumes. The addition of directional information using Cherenkov light and fast timing would enhance the scientific reach of these detectors, especially for searches for neutrino-less double-beta decay. In this paper, we develop a technique for extracting particle direction using the difference in arrival times for Cherenkov and scintillation light, and evaluate several detector advances in timing, photodetector spectral response, and scintillator emission spectra that could be used to make direction reconstruction a reality in a kiloton-scale detector.

What About Lower Energies?

What About Lower Energies?

E [MeV]

Summary

Large detector mass is required to search for neutrino-less double beta decay - liquid scintillator detectors scale well to large masses

We propose to use Cherenkov light to reconstruct double beta decay event topology in a kilo-ton liquid scintillator detector - double beta decay electrons are above Cherenkov threshold

- Cherenkov light travels faster than scintillation light
- early light contains directional information

Fast Photo-Detectors with TTS of ~100ps are needed to separate Cherenkov from scintillation light (see slides/posters by the LAPPD team for an example of such photo-detector)