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In this work, the authors present analytic models for atomic layer deposition (ALD) in three

common experimental configurations: cross-flow, particle coating, and spatial ALD. These models,

based on the plug-flow and well-mixed approximations, allow us to determine the minimum dose

times and materials utilization for all three configurations. A comparison between the three models

shows that throughput and precursor utilization can each be expressed by universal equations, in

which the particularity of the experimental system is contained in a single parameter related to the

residence time of the precursor in the reactor. For the case of cross-flow reactors, the authors show

how simple analytic expressions for the reactor saturation profiles agree well with experimental

results. Consequently, the analytic model can be used to extract information about the ALD surface

chemistry (e.g., the reaction probability) by comparing the analytic and experimental saturation

profiles, providing a useful tool for characterizing new and existing ALD processes. VC 2014
American Vacuum Society. [http://dx.doi.org/10.1116/1.4867441]

I. INTRODUCTION

In recent years, the range of potential applications for

atomic layer deposition (ALD) has expanded beyond semi-

conductor manufacturing into areas such as catalysis, energy

storage, and photovoltaics.1–6 One of the chief advantages of

ALD is that it is intrinsically scalable. In fact, the same self-

limited nature that allows conformal coating of high aspect

ratio features makes it possible to coat arbitrarily large sub-

strates and facilitates the transition from lab to industry.

However, the viability of ALD for large-scale manufacturing

in these new areas will be dictated by practical considera-

tions such as throughput and precursor utilization.

In an effort to bring these new applications to fruition,

three strategies are being pursued for high speed, high effi-

ciency ALD: cross-flow reactors, spatial ALD, and particle

coating.7–9 One common challenge cutting across these three

strategies is that, while new ALD processes are constantly

being developed, there is no simple way to calculate the

throughput or precursor utilization based on the deposition

parameters and the ALD chemistry. While this does not stop

the development of ever more efficient processes, it obfus-

cates direct comparisons with competing strategies for mate-

rials synthesis such as chemical vapor deposition and

sputtering. Curiously enough, there has been a strong interest

in understanding the dynamics of coating high-aspect ratio

structures at the feature scale in ALD.10–13 However, this in-

terest has so far not carried through to the reactor scale, where

simulation efforts have always been oriented to the numerical

solution of transport equations or the use of computational

fluid dynamic approaches and multiscale models.14–18

Likewise, there is a strong research effort directed toward

predicting ALD reaction kinetics from first principles

calculations.19–21 Combining computational fluid dynamics

with these first principles calculations offers the potential to

further our understanding of the interplay between atomistic

aspects of surface kinetics and the performance of an ALD

process at a reactor scale. However, these simulations are

very system-specific. An alternative approach, widely applied

in the field of chemical vapor deposition (CVD), is the use of

simpler kinetic models from which it is possible to extract

effective kinetic data by fitting growth rates and growth pro-

files as a function of the experimental conditions.22–24 These

models help rationalize the results obtained and can be used

to extract effective values of lumped kinetic data, evaluate

the ideality of different processes, and more importantly,

extrapolate the behavior of a system to scale-up conditions.

However, the time dependent nature of ALD makes the deri-

vation of analytic expressions more difficult compared with

the conventional steady-state conditions in CVD.

The purpose of our work is to fill this gap by providing

models for coverage, throughput, and materials utilization in

the three main ALD manufacturing strategies: cross-flow,

particle coating, and spatial ALD. Rather than focusing on

detailed numerical models, our approach uses simple yet cor-

rect models that can be solved analytically and that lead to

closed expressions in which the impact of each parameter

can be easily identified. In the case of cross-flow reactors,

we validate our model by direct comparison with experimen-

tal growth profiles. Our results show that, despite the differ-

ences in equipment and mode of operation, a universal

expression for throughput and materials utilization can be

obtained for all these systems, in which the characteristics of

the reactor are contained in a single parameter. This expres-

sion is also coincident with the analytic expressions previ-

ously derived for ALD under diffusive transport for coating

high aspect ratio features and nanostructured substrates.12,25

This highlights the fact that, despite the wide variability in

designs, the underlying physics controlling throughput and

materials utilization is the same in all cases.a)Electronic mail: jelam@anl.gov
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II. MODEL AND RESULTS

A. ALD surface chemistry

We have modeled the ALD surface chemistry using an ir-

reversible, first-order Langmuir kinetic model, which has

been extensively used in the literature.10,14,15 In this approxi-

mation, the change in the fraction of available sites h, which

is related to the surface coverage or reacted precursor mole-

cules through c ¼ 1� h, is first order in both h and the pre-

cursor gas density n. n is related to the precursor partial

pressure through the ideal gas equation: p ¼ nkBT.

@h
@t
¼ �s0

1

4
vthb0hn: (1)

Here, vth the mean thermal velocity, s0 is the average area of

a surface site, which is related to the growth per cycle or,

more directly, to the net mass gain as measured using a

quartz crystal microbalance. Finally, b0 is the bare reaction

probability, which is the probability that an incident precur-

sor molecule reacts on a pristine surface. Using this model,

the surface chemistry is represented by just two parameters:

b0 and s0.

B. Cross-flow reactor

Simple 1-D models of cross flow reactors based on

the self-limited ALD model described above have been

presented in the literature with and without axial diffusion

(plug flow), and in both cases, good agreement with experi-

ment was obtained.14,15 Likewise, an equivalent discrete

model of a plug flow reactor has been used by Knoops.26

However, all these precedents rely on a numerical solution

of the corresponding equations, which makes it hard to

extract analytic expressions for throughput and materials

utilization.

Here, we will consider a plug flow model in which the

density of species along a reactor is given by the equation

@n

@t
þ u

@n

@z
¼ � S

V

1

4
vthb0hn: (2)

Here, S is the reactor surface area, V is the reactor volume,

and u is the axial flow velocity. This is essentially the model

considered by Ylilammi and later by Yanguas-Gil but setting

axial diffusion to zero.14,15 This equation, along with Eq. (1),

is subject to the following initial and boundary conditions:

the process is characterized by a profile of the available sites

at the beginning of the pulse hðz; 0Þ, and a density profile at

the entrance of the reactor nð0; tÞ. The density profile at the

inlet represents the pressure profile during the precursor dose,

which in our model can take any arbitrary shape.

It can be shown that Eqs. (1) and (2) subject to the initial

and boundary condition described above can be solved ana-

lytically, resulting in

c zð Þ ¼ 1�
hðz; 0Þexp

S

Vu

1

4
vthb0

ðz

0

hðz0; 0Þdz0
� �

exp
S

Vu

1

4
vthb0

ðz

0

hðz0; 0Þdz0
� �

þ exp s0

1

4
vthb0

ðt

0

nð0; t0Þdt0
� �

� 1

: (3)

This solution can be simplified for the case of a saturated

surface hðz; 0Þ ¼ 1 so that the coverage profile in the reactor

is given by

c zð Þ¼
exp s0

1

4
vthb0

ðt

0

nð0;t0Þdt0
� �

�1

exp
S

Vu

1

4
vthb0z

� �
þexp s0

1

4
vthb0

ðt

0

nð0;t0Þdt0
� �

�1

:

(4)

Equation (4) provides the coverage profile in a cross flow

reactor as a function of the dose time. A key property of

this solution is that it does not depend on the shape of the

precursor pressure pulse but only on the total exposure.

Therefore, using the average density and the dose time so

that

td �n ¼
ðtd

0

nð0; t0Þdt0: (5)

We finally obtain

c z; tdð Þ ¼
exp s0

1

4
vthb0�ntd

� �
� 1

exp
S

Vu

1

4
vthb0z

� �
þ exp s0

1

4
vthb0�ntd

� �
� 1

¼ exp td=�tð Þ � 1

exp z=�zð Þ þ exp td=�tð Þ � 1
:

(6)

Equation (6) depends of two parameters, a characteristic

length �z and a characteristic time �t.
Equation (6) provides the surface coverage and the corre-

sponding growth per cycle of the ALD process when the pre-

cursor dose is carried out under saturated conditions for the

other reactants in the ALD process. These conditions are typ-

ically used when measuring uptake/saturation curves. In the

most general case, a set of Eq. (3)—one for each step of the

ALD cycle—needs to be solved self-consistently to extract
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the final growth per cycle. Details on the model extension to

treat the case of more than one precursor are shown in the

Discussion.

Despite its simplicity, Eq. (6) is able to reproduce the ex-

perimental saturation profiles in tubular viscous-flow reac-

tors. In a previous work, we carried out measurements of

saturation profiles of trimethylaluminum (TMA) and water

for different subsaturating TMA exposures.15 In Fig. 1(a),

we show a comparison between the experimental data (solid

symbols) and the profiles determined using Eq. (6) (lines).

To obtain the analytic profiles, we assumed a reaction proba-

bility of 10�2.13 As a comparison, the corresponding curves

for a reaction probability of 10�3 are shown in Fig. 1(b). It is

evident that, despite the simplicity of the model, Eq. (1)

accurately predicts the coating profiles of ALD systems

driven by a surface chemistry that is close to that of Eq. (6).

We can use Eq. (6) to determine the exposure time, td
required to coat a reactor of a length L, and therefore the

throughput of a process under scale up. By assuming that a

saturation coverage c is obtained at z ¼ L, we can express

the throughput as

td ¼ t0 þ
S

�ns0V

L

u
; (7)

where t0 is the time required to achieve the saturation cover-

age c0 at the inlet, which can be determined either experi-

mentally or analytically from

t0 ¼ �
4

s0b0vth�n
ln 1� cð Þ: (8)

According to Eq. (7), the time required to coat a reactor is

the sum of a size-independent contribution (the saturation

time) and a second term that is linear with the reactor length,

L. This means that if t0 is sufficiently long (for instance, due

to a low reaction probability), essentially no additional time

is required to coat a larger substrate. Likewise, Eq. (7) shows

that a higher flow velocity, u will reduce the additional time

needed to coat large substrates. The S=V ratio, which is given

by S=V ¼ 1=ð2dÞ for a parallel plate reactor with plate spac-

ing d, and S=V ¼ 1=ð2RÞ for a tubular reactor with radius R,

also affects the dependence of the dose time with size. Figure

2(a) shows how these two terms compete with each other.

We show the predicted dose times normalized to the satura-

tion time as a function of reactor size for four different values

of the bare reaction probability [Fig. 2(a)] for a reactor with a

radius or plate spacing of 2 cm, a flow velocity of 1 m/s and a

precursor mass of 150 amu. The normalized times are inde-

pendent of the precursor density �n, and the surface site area

s0. Lower reaction probabilities lead to lower throughputs;

FIG. 1. (a) Comparison between growth profiles predicted by the analytic

model for a reaction probability of 10�2 based on Eq. (6) (lines) and experi-

mental data obtained for increasing TMA dose times (symbols). (b) Growth

profiles predicted by the analytic model for a reaction probability of 10�3.

FIG. 2. (Color online) Results from the analytic model for a cross-flow reac-

tor based on Eq. (6). (a) Impact of reactor size and reaction probability on

the precursor dose time normalized to the saturation time at the inlet. (b)

Impact of reactor size and precursor vapor pressure on the precursor dose

time. Note that for precursor vapor pressures of �0.001 Torr and a reactor

size greater than �1 m, the dose time increment exceeds 100 s.
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however, in these systems, the throughput is relatively insen-

sitive to reactor size. The actual time increases due to larger

reactor sizes are shown in Fig. 2(b) for s0 ¼ 5 Å2 for the

same geometry as Fig. 2(a). It is clear that high vapor pres-

sure precursors are crucial to achieve a high throughput. A

direct examination of Eq. (7) shows that this time increment

is independent of the reaction probability.

By dividing the amount of precursor consumed by the

total precursor exposure given by Eq. (7), we can calculate

the precursor utilization g, the fraction of ALD precursor

that is actually incorporated in the film

g ¼ 1

1þ V

S

�ns0u

L
t0

: (9)

Using the expression for t0 in Eq. (8), the precursor effi-

ciency is found to be an increasing function of the following

non-dimensional variable valid for both a parallel plate and a

tubular reactor:

g ¼ f b0

L

d

vth

u

� �
: (10)

Figure 3 shows some characteristic curves of Eq. (9)

obtained for 99% coverage as a function of reaction proba-

bility at selected reactor sizes. One of the consequences of

Eq. (10) is that the materials utilization is larger when the

reaction probability increases. It is also interesting to note

that the precursor utilization increases with scale up.

C. Particle coating

We can apply the same procedure carried out in the previ-

ous section to determine the throughput and materials utili-

zation for ALD particle coating under conditions typical of

fluidized bed and rotating drum coating system. As with the

cross-flow reactor, analytic solutions can be obtained under

the well-mixed reactor approximation commonly used in

chemical engineering.27

As shown in Fig. 4, the well-mixed approximation for

particle coating assumes that a certain volumetric flow /0 of

precursor is constantly being introduced at an inlet density

n0 into a reactor of volume V containing a total surface area

S. The total reactor pressure is kept constant by pumping or

venting the mixture with the same volumetric flow as it is

inserted. Under the well-mixed approximation, we assume

that the density and coverage are homogeneous inside the re-

actor, and therefore only a function of time. Assuming a fast

equilibration of the precursor density inside the reactor, we

obtain the following two equations for the gas density of pre-

cursor molecules and the surface coverage:

/0ðn0 � nÞ ¼ Sb0

1

4
vthnh; (11)

dc

dt
¼ s0b0

1

4
vthnð1� cÞ; (12)

subject to the initial condition: c 0ð Þ ¼ 0 for a pristine surface.

From the solution to these equations, we can determine

the time required to achieve a certain surface coverage c

tc ¼
S

/0s0n0

� 4

vths0b0n0

ln 1� cð Þ ¼ t0 þ
S

/0s0n0

; (13)

wherein by analogy to Eq. (8), we have defined t0 as

t0 ¼ �
4

s0b0vthn0

ln 1� cð Þ: (14)

And, as in the case of the plug flow reactor, we have that the

precursor utilization is given by

g ¼ cS=s0

/0n0tc
: (15)

This is simply the ratio between the molecules consumed

and the molecules dosed into the system. Substituting the

expression for tc in Eq. (13), we obtain that when c! 1

g ¼ 1

1� 4/0

vthb0S
ln 1� cð Þ

: (16)

Two important consequences of this equation are that the

precursor utilization increases with the surface area, thereby

FIG. 3. (Color online) Impact of reaction probability and reactor size on pre-

cursor utilization predicted by the analytic model for a cross-flow reactor

[Eq. (9)].

FIG. 4. Scheme for the ALD particle coating model under the well-mixed re-

actor approximation.
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becoming more efficient, and that low volumetric flows are

essential in order to achieve high materials utilization. The

prefactor in Eq. (16) can be understood as the ratio between

the volume of precursor molecules reaching the surface to

the volume leaving the reactor. Note that the efficiency does

not depend on the precursor density or the surface site area.

As in the case of cross-flow reactors, the reaction probability

plays an important role in determining the overall materials

utilization through its effect in the dose time tc.

D. Spatial ALD

A similar model can be applied to the case of spatial ALD

as it is currently being implemented for roll-to-roll coating

and continuous processing.7,28 As shown in Fig. 5, we

assume that the precursor is contained inside a chamber of

volume V, and that a moving web (or substrate) with veloc-

ity u is exposed to the precursor over a length L. Under the

well-mixed approximation, we assume that the moving web

is exposed to a constant precursor density n, and that the pre-

cursor is injected into the chamber at a volumetric flow /0

and density n0. As a particular surface site moves along with

the web, its coverage increases according to the expression

u
dc

dz
¼ s0b0

1

4
vthnð1� cÞ: (17)

Assuming that all sites are uncoated as the web enters the

chamber, c 0ð Þ ¼ 0, we have

cðzÞ ¼ 1� h zð Þ ¼ 1� exp � s0b0vthnz

4u

� �
: (18)

And the average reaction probability �b inside the chamber is

given by

�bL ¼ b0

ðL

0

hðzÞdz ¼ 4u

s0vthn
1� exp � s0b0vthnL

4u

� �� �

¼ 4u

s0vthn
c; (19)

where c is the final coverage achieved by a single pass

through the chamber. Using Eq. (19) and an analogous

expression to Eq. (11), we obtain the following expression

for the average precursor density inside the chamber under

the well-mixed approximation:

/0ðn0 � nÞ ¼ S�b
1

4
vthn ¼ S

L

u

s0

c ¼ S

s0

c
1

tc
; (20)

where we have defined the time tc as the time a surface site

in the web is exposed to the precursor tc ¼ L=u. From Eqs.

(19) and (20) we can extract the residence time required to

achieve a final coverage c, resulting in the expression:

tc ¼
L

u
¼ S

/n0s0

� 4

b0s0vthn0

ln 1� cð Þ ¼ S

/0n0s0

þ t0;

(21)

where t0 is defined as in Eq. (14). Note that Eq. (21) is the

same as Eq. (13) derived for particle coating. The difference

is that S is now the surface of the web exposed to the

precursor.

If again we determine the precursor utilization, we obtain

that this is given by the same expression given in Eq. (16)

g ¼ 1

1� 4/0

vthb0S ln 1� cð Þ
: (22)

As in the case of the particle coating, the precursor efficiency

in spatial ALD is determined by the volumetric flow of pre-

cursor and the bare reaction probability.

E. Universality

We have derived expressions for the throughput and pre-

cursor utilization for three different experimental configura-

tions: cross-flow reactor, particle coating, and spatial ALD.

The throughput expressions Eqs. (7), (13), and (21) can be

unified in a single formula

tc ¼ t0 þ
tres

c
; (23)

where t0 is the saturation time for a pressure at the entrance

of the reactor given by Eq. (14), and represents the fastest

possible process, one in which a constant precursor density

n0 is sustained at every point in the reactor during the whole

exposure:

t0 ¼ �
4

b0s0vthn0

ln 1� cð Þ: (24)

The second term in Eq. (23) is due to the need to transport

enough precursor molecules to achieve saturation throughout

the reactor. In this term, c is the so-called excess number,

defined as the number of precursor molecules per surface

site:12,15

c ¼ n0s0V

S
: (25)

And tres is the residence time inside the reactor, which is the

only variable that depends on the experimental configuration.

For the cross-flow case, tres ¼ L=u is given by the flow veloc-

ity and the reactor length, whereas for the particle coating

and spatial ALD tres ¼ V=/ is given by the volumetric flow

and the chamber volume. The physical interpretation of Eq.

(23) is simple: reaction and transport take place

FIG. 5. Scheme for the spatial ALD model under the well-mixed reactor

approximation. The moving web sees a constant precursor pressure as it

moves along the chamber.
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simultaneously in the reactor, and the characteristic time will

be dominated by the slower process. What changes from con-

figuration to configuration is only the residence time because

this depends on the particular reactor design.

In a similar way, we can express the materials utilization

as

g ¼ 1

1þ t0c
tres

: (26)

Equations (25) and (26) encompass cross-flow, particle coat-

ing, and spatial ALD, with tres containing the only

configuration-specific information. If we now combine both

equations, we can extract the relationship between precursor

utilization and the minimum dose time required to achieve

saturation

g ¼ 1� t0

tc
: (27)

Equation (27) establishes a general property of ALD proc-

esses: when the process time, or the minimum dose time

required for saturation in the system, tc is close to the time

for saturating an individual site, (tc=t0 ! 1) the fraction of

precursor actually incorporated into the film tends to zero. In

other words, when the throughput is high, the precursor utili-

zation is low. Conversely, when the process is transport lim-

ited, (tc=t0 � 1) the precursor utilization is high, but the

throughput is low. This trade-off is illustrated in Fig. 6.

One important characteristic of Eq. (27) is that t0 depends

only on the ALD chemistry but not the details of the experi-

mental system. This means that for a known ALD process

[i.e., reactive sticking coefficient, vapor pressure, and growth

per cycle, see Eq. (24)], we can determine the precursor utili-

zation simply by measuring the minimum time to saturation,

tc. Alternatively, given two desired values of process time

and precursor utilization, we can determine the value of t0

that would be required

t0 ¼ tc 1� gð Þ: (28)

Given the expression for t0 [Eq. (14)], we find that

tc 1� gð Þ � 1

s0b0n0

: (29)

Therefore, in order to achieve both short processing times

and high precursor efficiencies, faster ALD kinetics are

required. This can be accomplished by increasing the reac-

tion probability, the growth per cycle (which is inversely

proportional to the average surface site area, s0), or the pre-

cursor vapor pressure. The impact of the product b0s0n0 on

t0 is shown in Fig. 7 for selected temperature and molecular

mass values.

III. DISCUSSION

In this work, we developed analytic solutions for ALD

processes for cross-flow, particle coating, and spatial ALD

conditions. These models are based on a first-order, irreversi-

ble Langmuir kinetic model that reproduces the main aspects

of the ALD chemistry. In the case of the cross-flow reactors,

we showed that this simple model agrees well with experi-

mental growth profiles. Therefore, the comparison of axial

profiles in cross-flow reactors with the expression given by

Eq. (6) can be used as a convenient tool to understand the

surface chemistry of new ALD processes. The plug-flow

model for cross-flow reactors is based on the following two

approximations: (1) The characteristic transverse diffusion

time is short compared with the residence time. This is

required to ensure that the gas profiles in the reactor are

cross-sectionally homogeneous, or at least stationary. (2)

Axial diffusion can be neglected when compared with axial

advection. In a previous work, we analyzed these require-

ments for cross-flow reactors.15 The axial Peclet numbers for

a base pressure of 1 Torr and an axial velocity of 1 m/s, the

conditions used during the acquisition of the experimental

data in Fig. 1, were shown to be larger than one, thus ensur-

ing the validity of the plug-flow approximations.

FIG. 6. Interplay between precursor utilization and normalized precursor

dose time. This relationship is valid for cross-flow, particle coating, and spa-

tial ALD conditions under the well-mixed reactor approximation. Note that

in order to achieve more than 95% precursor utilization dose times at least

50 times larger than the saturation time are required.

FIG. 7. Impact of the reaction probability b0, precursor pressure p0, and sur-

face site area s0 on the precursor dose time t0 for selected conditions, (a)

T¼ 473 K, M¼ 150 amu; (b) T¼ 473 K and M¼ 300 amu; (c) T¼ 373 K

and M¼ 150 amu. Note that t0 is a function of the product: b0p0s0.
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By comparing the expressions for minimum process times

and precursor utilization under the three conditions explored

in this work, we derived a single formula that captures the

interplay between transport and self-limited chemistry in

ALD processes. A fourth case not considered yet is transport

under purely diffusive conditions, for instance, during the

coating of high aspect ratio features. In earlier works,12,25

we showed how Gordon’s expression for the saturation dose

time in circular pores29 could be generalized to the case of

arbitrary reaction probability and pore shape using

tc ¼ �
4

b0s0vthn0

ln 1� cð Þ þ L2S

DVn0s0

: (30)

Here, L is the pore length, S=V is the specific surface area

(area per unit volume), and D is the diffusion coefficient,

which can be molecular or Knudsen. In view of the results

presented in the previous section, we can now express this

equation as

tc ¼ t0 þ
tdiff

c
; (31)

where t0 and c are defined in the previous section, and tdiff is

given by

tdiff ¼
L2

D
: (32)

Therefore, we can see how the universality of Eq. (23) can

be expanded to include purely diffusive flow.

It is also important to point out that the expressions

derived for particle coating and spatial ALD assume a well-

mixed reactor. This constitutes the best-case scenario in

which precursor transport in the reactor is fast enough to

compensate for precursor consumed in the ALD process. In

reality, precursor depletion can further reduce the throughput

with respect to the predictions of the well-stirred reactor

model, as recently suggested in the literature.28 The same

limitations are present in the cross-flow model, which

assumes that the characteristic time for precursor transport to

the walls is much faster than the rate of precursor consump-

tion.15 For situations in which this is not the case, the expres-

sions derived in this work will underestimate the throughput,

and full 3-D simulations of the reactors will be required.

One consequence of the analysis in the previous section is

that the minimum possible time to achieve saturation for any

of the three configurations considered corresponds to t0,

given by Eq. (14). Thus, t0 offers the absolute limit for a

given ALD process. This minimum time corresponds to the

situation in which the precursor injection is high enough to

compensate for its depletion and in which the transport takes

place instantaneously. Not surprisingly, this time t0

decreases for higher precursor density. However, it is worth

mentioning that the reaction probability, b0, and the growth

per cycle, s0, play equally important roles. Therefore, in the

search for more efficient ALD precursors, it is important to

design not only for high vapor pressure, but also for high

reaction probability and growth per cycle. As shown in the

previous section, high reaction probabilities also contribute

to a higher precursor efficiency. Consequently, the gains in

throughput and precursor utilization achieved by a high reac-

tion probability could offset the cost of a more expensive

precursor.

Our approach assumes ideal first-order Langmuir behav-

ior, but this assumption can be violated in ALD processes

that exhibit non-idealities such as soft saturation, “parasitic”

CVD, or surface recombination. However, even in such

cases excellent fits to the experimental profiles can be

obtained, albeit with increased saturation times compared to

the expressions provided in this manuscript. Formally

extending the plug flow and well-mixed approximations to

include these more complex surface processes is straightfor-

ward, but would almost certainly preclude analytic expres-

sions such as those presented above.

Finally, Eq. (6) was obtained under the assumption that

the other steps in the ALD cycle were completely saturated,

so that coverage profiles are completely determined by only

one of the two or more components of a single ALD cycle.

Here, we briefly show how this process can be extended to

study a sequence of pulses during ALD. The key step is to

realize that the final coverage of precursor 1, c1f ðzÞ is equal

to the fraction of available sites of precursor 2, h20ðzÞ. This

allows us to express the nth A/B ALD cycle of the synthesis

process as

c
ðnÞ
1f zð Þ ¼ 1�

c
ðn�1Þ
2f ðzÞexp

S

Vu

1

4
v
ð1Þ
th b1

ðz

0

c
ðn�1Þ
2f ðz0; 0Þdz0

� �

exp
S

Vu

1

4
v
ð1Þ
th b1

ðz

0

c
ðn�1Þ
2f ðz0; 0Þdz0

� �
þ exp s0

1

4
v
ð1Þ
th b1�nt1

� �
� 1

; (33)

c
ðnÞ
2f zð Þ ¼ 1�

c
ðnÞ
1f ðzÞexp

S

Vu

1

4
v
ð2Þ
th b2

ðz

0

c
ðnÞ
1f ðz0; 0Þdz0

� �

exp
S

Vu

1

4
v
ð2Þ
th b2

ðz

0

c
ðnÞ
1f ðz0; 0Þdz0

� �
þ exp s0

1

4
v
ð2Þ
th b2�nt2

� �
� 1

; (34)
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where b1 and b1 are the reaction probabilities, �nt1 and �nt2

are the doses, and v
ð1Þ
th and v

ð2Þ
th are the mean thermal speeds

of precursors 1 and 2, respectively. Given the initial cover-

age conditions, one can calculate the changes in coverage as

the number of cycles. In the steady-state regime, we can

impose periodic boundary conditions, and assume that

c
ðn�1Þ
i ðzÞ ¼ c

ðnÞ
i ðzÞ for both precursors. The actual growth per

cycle is equal to the difference in coverage before and after a

dose, GPC ¼ c
ðnÞ
1 ðzÞ � c

ðnÞ
10 ðzÞ ¼ c

ðnÞ
1 ðzÞ þ c

ðn�1Þ
2 ðzÞ � 1. It is

easy to see that Eqs. (33) and (34) reduce to the two asymp-

totic cases. For sufficiently long pulses �nt2, c2ðzÞ ! 1 in Eq.

(34), and Eq. (33) reduces to Eq. (6). Likewise, if �nt2 ¼ 0,

then by Eq. (34) we obtain c
ðnÞ
2 ðzÞ ¼ 1� c

ðnÞ
1 ðzÞ, which gives

GPC¼ 0 during the next cycle. Equation (33) then trans-

forms into an iterative equation whose fixed point is simply

that c1ðzÞ ! 1. That is, after multiple cycles of the same pre-

cursor, the whole reactor becomes saturated.

IV. SUMMARY AND CONCLUSIONS

In this work, we have derived analytic solutions for cover-

age, throughput, and materials utilization for ALD in three of

its most common experimental configurations: cross-flow

reactors, particle coating, and spatial ALD conditions. These

analyses lead us to unified expressions for throughput and

materials utilization valid for all three cases in which the role

of reactor design is confined to a single parameter measuring

the residence time of unreacted precursor in the reactors. For

cross-flow reactors, a comparison with thickness measure-

ments showed that, despite its simplicity, the model can

reproduce experimental saturation profiles. Consequently, the

analytic model can provide information on the ALD surface

chemistry (reaction probability) for new and established ALD

processes. Finally, we would like to point out that the expres-

sions derived in this work could be used as a starting point

for cost models and feasibility studies to develop manufactur-

ing processes based on atomic layer deposition.
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