Hermetic Packaging of the LAPPDs and

Fast Timing Implications for Neutrino-less Double-Beta Decay Searches

Andrey Elagin University of Chicago

HEP Lunch Seminar 10/28/2013

What is $0\nu\beta\beta$?

Compare to normal beta decay: $Z \rightarrow (Z+1), e^{-}, \overline{v}_{e}$

Why is it interesting?

Nuclear Process

If observed, neutrino is a Majorana particle, i.e. own antiparticle.

Signature: two electrons with well defined total kinetic energy (2-4 MeV)

What are the challenges?

What are the challenges?

Tough backgrounds: need to get smarter

Ideas for 0vββ experiments

• Total energy in signal events is well defined.

- Use scintillation light for energy measurements
- Use event topology to suppress backgrounds
 signal is two, mostly, "back-to-back" electrons
- Electrons are ~1MeV \rightarrow above Cherenkov threshold

- all light can be used to constrain location of the vertex
- Cherenkov light arrives early because of longer wavelength and delay of the scintillation process

Simulation of ¹¹⁶Cd $0\nu\beta\beta$ event

Emission Spectra

Simulation of 5 MeV electrons in KamLAND scintillator

5 MeV is a little higher for $0\nu\beta\beta$ search but much lower than typical energies where cherenkov light is being considered.

Seems to be a reasonable choice to test separation between Cherenkov and scintillation

All photons below 360nm get absorbed

Cherenkov vs Scintillation

Simulation of 5 MeV electrons in KamLAND scintillator

Reconstruction: vertex

Step 1: find vertex (adapted from water cherenkov)

- Assume all light is emitted from a single point (~3 cm track in a ~6 m detector)
- For light emission from a single point any 4 photons (quadruples) would be sufficient to solve for vertex
- With all "real world" effects we use 400 randomly chosen quadruples and select the one which fits the best to the full ensemble of all photon hits
- Goodness of the fit is based on the distribution of "point time residuals" (the difference between actual hit time and predicted time of flight from the vertex)

For i=1...4: $(x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2 = v(t_i - t_0)^2$ *v* is the speed of light in the media

Time residuals $dT = (t_j - t_0)$, where j=1...N_{all}

The most narrow **dT** distribution₉ is the closest to the true vertex

Reconstruction: direction

Step 2: find direction

- Cherenkov light is directional
- Timing cut enhances the purity of the Cherenkov light
- The centroid of all vectors pointing from the vertex is a good measure of the direction of the track

Directionality of 5 MeV e⁻

Measuring Directionality in Double-Beta Decay and Neutrino Interactions with Kiloton-Scale Scintillation Detectors

C. Aberle,¹ A. Elagin,² H. J. Frisch,² M. Wetstein,² and L. Winslow¹

¹University of California Los Angeles, Los Angeles, CA 90095, USA ²University of Chicago, Chicago, IL 60637, USA (Dated: July 23, 2013)

Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino measurements due to their good energy resolution and scalability to large volumes. The addition of directional information using Cherenkov light and fast timing would enhance the scientific reach of these detectors, especially for searches for neutrino-less double-beta decay. In this paper, we develop a technique for extracting particle direction using the difference in arrival times for Cherenkov and scintillation light, and evaluate several detector advances in timing, photodetector spectral response, and scintillator emission spectra that could be used to make direction reconstruction a reality in a kiloton-scale detector.

5 MeV electrons are very promising even with a very simple reconstruction

arxiv:1307.5813

What about Lower Energies?

What about Lower Energies?

- With 100ps timing, the vertex is constrained within 4-6 cm and the directional information can be extracted even for ~1MeV electrons
- The next major step is to compare "back-to-back" $0\nu\beta\beta$ events with $2\nu\beta\beta$ background ¹³

Candidate Isotopes for 0vββ

lsotope	Endpoint	Abundance
⁴⁸ Ca	4.271 MeV	0.0035%
¹⁵⁰ Nd	3.367 MeV	5.6%
⁹⁶ Zr	3.350 MeV	2.8%
¹⁰⁰ Mo	3.034 MeV	9.6%
⁸² Se	2.995 MeV	9.2%
-TI6Cd	2.802 MeV	7.5%
¹³⁰ Te	2.533 MeV	34.5%
¹³⁶ Xe	2.479 MeV	8.9%
⁷⁶ Ge	2.039 MeV	7.8%
¹²⁸ Te	0.868 MeV	31.7%

Quantum dot doped scintillators

Common materials are CdS, CdSe, CdTe

Advantage of quantum dot doping:

- Narrow the scintillation spectrum
- Shift scintillation spectrum to shorter wavelength
- Dope with metals which can undergo 0vbb

Work by UCLA group C.Aberle, J.J.Li, S.Weiss, and L.Winslow

This is another lunch topic!

Event Topology

100 "signal-like" events (5MeV electrons back-to-back)

100 "bkg-like" events (5MeV electrons at 90 degree)

Cherenkov light only, no time cut, 100% light collection

Spherical Harmonics

Real-value basis: $Y_{\ell m} = \begin{cases} \frac{1}{\sqrt{2}} \left(Y_{\ell}^{m} + (-1)^{m} Y_{\ell}^{-m} \right) = \sqrt{2} N_{(\ell,m)} P_{\ell}^{m}(\cos\theta) \cos m\varphi & \text{if } m > 0\\ Y_{\ell}^{0} & \text{if } m = 0\\ \frac{1}{i\sqrt{2}} \left(Y_{\ell}^{-m} - (-1)^{m} Y_{\ell}^{m} \right) = \sqrt{2} N_{(\ell,|m|)} P_{\ell}^{|m|}(\cos\theta) \sin |m|\varphi & \text{if } m < 0. \end{cases}$ $f(\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} f_{\ell m} Y_{\ell m}(\theta,\varphi). \qquad N_{(\ell,m)} \equiv \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}}.$ $f_{\ell}^{m} = \int_{\Omega} f(\theta, \varphi) Y_{\ell}^{m*}(\theta, \varphi) d\Omega = \int_{\Omega}^{2\pi} d\varphi \int_{\Omega}^{\pi} d\theta \sin \theta f(\theta, \varphi) Y_{\ell}^{m*}(\theta, \varphi).$ "Power" (rotation invariant) L2 norm $S_{ff}(\ell) = \sum_{m=-\ell} |f_{\ell m}|^2$ $\int_{\Omega} |f(\Omega)|^2 d\Omega = \sum_{\ell=0}^{\infty} S_{ff}(\ell)$ 16

Spherical Harmonics for back-to-back vs 90 degree topologies

- Look for the difference between black (back-to-back) and blue (90-degree) lines.
- **Red line** is for comparison with single electron events

S_I as function of time cut

I like this strong dependence on time because

with fast photo-detectors we may be able to follow the time evolution of spherical harmonics and use this information in reconstruction

S_I as function of electron energy

Note Y axis range, the dependence isn't too strong

What's Next?

- Compare simulated $0\nu\beta\beta$ events with $2\nu\beta\beta$
- Consider events off center

Now, I will talk about LAPPD and Hermetic Packaging ²⁰

Transformational Change

- Large area
- Fast timing
- Inexpensive

LAPPD Components

Glass Package (20x20cm²)

23

- Anode is made by silk-screening
- Flat panel
- No pins, single HV cable
- Modular design
- High bandwidth 50 Ω object
 - designed for fast timing

Ceramic body packaging is a parallel (and collaborative) effort at Berkeley SSL

MCP Fundamentals

Conventional Pb-glass MCP

Incom glass substrate

Large-Area MCPs

MCP by Atomic Layer Deposition (ALD)

Beneq reactor for ALD @Argonne National Laboratory

ALD Process for MCP Coating Developed by A.Mane, J.Elam

- Porous glass

- Resistive coating ~100nm (ALD)
- Emissive coating ~ 20nm (ALD)

Conductive coating (thermal evaporation or sputtering)

pore

System Integration: "Demountable"

Demountable 1.0 (May 2012)

Demountable 3.0 (Sep-Dec 2012)

Performance

RSI Invited Article

Hermetic Packaging

Frit Seal

J.Gregar, M.Minot

- 1) Attach pump out tube to 8.66x8.66" frame
- 2) Apply schott #G018-223 K3 frit paste to frame
- 3) Fire the frit (many trials to optimize parameters)
- 4) Prepare for anode plate frit sealing
- 5) Position anode on top of the frame

6) Add weight

- Tile bases are reliably reproducible
- Mechanical and vacuum properties have been tested

Top Seal

How to close frit sealed tile base at the top and stay at moderate temperatures? "Top Seal" problem

Use indium or indium alloys

- soft metal
- low melting point (157C for pure In, 72C for InBi)
- essentially zero vapor pressure
- indium-glass seals are successfully used by industry

Parallel efforts: "Hot Seal" and "Cold Seal" (or "Compression Seal")

Hot Seal

Step 1: apply melted indium onto the glass

Step 2: bring parts into contact and press

Step 3: pump from open side and leak check

Prerequisites for leak-tight seal

- Strong Indium-Glass bond
- Strong Indium-Indium bond

Phase I (in air)

A.E., Henry Frisch, Mary Heintz, Bob Metz, Richard Northrop, Razib Obaid

Indium seal fundamentals

- interface (good adhesion of indium to the glass surface)
- oxide formation

Proof of principle using 1x1" test samples

- little oxidation (assembly is fast)
- many successful reproducible leak tight samples
- Several (>10) attempts to make 8x8" seal
- oxide formation becomes limiting factor (slow assembly)
- best result is a part with 10⁻⁶cc/s leak at a single pinpoint

...indium oxidizes quickly...

Phase II (in inert atmosphere)

Phase IIa (in inert atmosphere)

Nitrogen filled glove box: O_2 and H_2O concentration ~5ppm

...indium doesn't stick to glass if no O_2 ...

Phase IIb (add NiCr-Cu layer)

Borrowed from SSL seal (200nm of NiCr+Cu)

Known facts:

- Indium wets copper surface
 - Alloy is formed at the interface over time
- NiCr interface to glass is essential
- NiCr is a good match to glass in terms of thermal coefficient
- Cu would not stick to bare glass but₃₅ does so on NiCr

Testing NiCr-Cu-In Interface

Total 8 small size seals made: 5 are leak tight

3 have leaks (oxidation of Cu surface or electroding peeling off the glass)

NiCr-Cu coating of 1" samples done by D. Walters (ANL) M. Kupfer (UIC) J. Williams (ANL-HEP) C. Liu (ANL-APS) Q. Guo (UChicago MRSEC)

Shear tests results

Leak tight samples:

Bare glass #1190 lbsBare glass #2278 lbsBare glass with groove268 lbsCu coated glass #3390 lbsCu coated glass #4345 lbs

Samples with a leak:

Bare glass #447 lbsCu coated glass #1213 lbsCu coated glass #2221 lbs

Sealing 8x8" parts

Testing NiCr-Cu-In Interface

Coating goes away if re-heated to 180C

Photos from Metallurgical Microscope (by H.L.Clausing)

Thin side

Thick side

Cu layer dissolves in indium

Solution

400cm² seal with 2.75 mm window

First leak tight 8x8" seal using LAPPD glass parts ⁴¹

Leak Test

Many tricks to avoid glass cracking when the pump starts

- Leak checker sensitivity 10^-8 cc/s of He
- Leak test lasted for 1 hour
- No leaks found!

Next Steps

- Test reproducibility of the "hot seal" recipe
- Move forward with tile assembly
- Try to make photo-cathode by In-Situ Photo-Cathode Synthesis (possible lunch topic)

