Deeper Sampling CMOS Transient Waveform Recording ASICs

The IRS and BLAB3 Deep Storage ASICs for UHE Radio Neutrino and **Next Generation Collider Particle Identification**

Matt Andrew, Kurtis Nishimura, Gary S. Varner

University of Hawai'i, and the Large Area Picosecond PhotoDetector Collaboration TIPP 2011, June 10, 2011

Why Waveform Sampling?

Traditional "crate based" electronics Q-ADC Gated Analog-to-Digital Converters _ Det chan TDC Referenced "triggered" Time-to-Digital Converters Disc. Trigger havener High-rate applications -0.01 -0.02 "pipelined operation" -0.03 Low-speed, low-resolution sampling -0.04 -0.05 High channel counts Motivation to reduce cabling Integrate electronics onto detector elements Det chan FADC Issues: cost, power, resolution, data volume

Switched Capacitor Array Sampling

"Oscilloscope on a chip"

Easy access to Waveform sampling

	WFS ASIC	Commercial		
Sampling speed	0.1-6 GSa/s	3 GSa/s		
Bits/ENOBs	16/9-13+	8/7.4		
Power/Chan.	<= 0.05W	Few W		
Cost/Ch.	< \$10 (vol)	> 100\$		

An Intrinsic Limitation

No power (performance savings) for continuous digitization

We aren't going to put Analog Devices out of business

"analog down conversion" → For most "triggered" 'event' applications, not a serious drawback

Gigasamples/s, but Nyquist?

Difficult to couple in Large BW (input C is deadly)

 $f_{3dB} = 1/2\pi ZC$

- More than 3pF input (ESD protection alone often more) limits ABW < 1GHz
- As a result, first generation WFS ASICs a few hundred to 1k samples (ATWD, SAM, DRS, LABRADOR...)
- Is this an fundamental limitation?

Why Deeper sampling?

Deeper storage: Buffered LABRADOR (BLAB1) ASIC

- Single channel
- 64k samples deep,
 same SCA technique as
 LAB, no ripple pointer
- Multi-MSa/s to Multi-GSa/s
- 12-64us to form Global trigger

Arranged as 128 x 512 samples Simultaneous Write/Read

3mm x 2.8mm, TSMC 0.25um

BLAB1 High speed Waveform sampling

- Comparable performance to best CFD + HPTDC
- MUCH lower power, no need for huge cable plant!
- Using full samples reduces the impact of noise
- Photodetector limited

NIM A602 (2009) 438

Ice Radio Sampler (IRS) / Buffered LABRADOR 3 (BLAB3) Specifications

32768	samples/chan (8-32us trig latency)
8	channels/IRS ASIC
8	Trigger channels
~9	bits resolution (12-bits logging)
64	samples convert window (~16-64ns)
1-4	GSa/s
1	word (RAM) chan, sample readout
16	us to read all samples
100's	Hz sustained readout (multibuffer)

- Difference between IRS/BLAB
 - BLAB has input amplifier
 - IRS doesn't really use internal trigger capability

IRS/BLAB3 Single Channel

• Sampling: 128 (2x 64) separate transfer lanes

Recording in one set 64, transferring other ("ping-pong" \rightarrow "2 stage sampling")

• Storage: 64 x 512 (512 = 8 * 64)

Wilkinson (32x2):
 64 conv/channel

Analog bandwidth

Input coupling simulation (35fF sample)

Magnitude [dB]

Wilkinson ADC – easy to integrate on-chip

12-bit ADC

- No missing codes
- Linearity as good as can make ramp

- Excellent linearity
- Basically as good as can make current source/ comparator

Storage Cell - compact

- Diff. Pair as comparator
 - Density ~ 25k storage cells/mm^2 (0.25um)

On chip Wilkinson Clock

Linearity Calibration

19

Example: 100 MHz sine wave input

- Need dT calibrations but only 128 per channel
- Any way to automate? (see K. Nishimura talk)

J. Davies – UC London

Not a small effect

Time Between Samples

More like 10% effect at 3.2GSa/s

Now a variety of options...

ASIC Amplification? # chan Depth/chan Sampling [GSa/s] Vendor Size [nm] Ext ADC?

DRS4	no.	8	1024	1-5	IBM	250	yes.
SAM	no.	2	1024	1-3	AMS	350	yes.
IRS2	no.	8	32536	1-4	TSMC	250	no.
BLAB3A	yes.	8	32536	1-4	TSMC	250	no.
TARGET	no.	16	4192	1-2.5	TSMC	250	no.
TARGET2	yes.	16	16384	1-2.5	TSMC	250	no.
TARGET3	no.	16	16384	1-2.5	TSMC	250	no.
PSEC3	no.	4	256	1-16	IBM	130	no.
PSEC4	no.	6	256	1-16	IBM	130	no.

→ Success of PSEC3: proof-of-concept of moving toward smaller feature sizes.

• Next DRS plans to use 110nm; next SAM plans to use 180 nm.

Future Prospects

- Expect many other designs in future
 - Barriers to entry are low
 - Many different reference designs out there
- Challenges (R&D continues):
 - Fine timing (~ 1ps)
 - Larger dynamic range
 - Deeper (continuous) sampling
 - Faster, sparsified readout
 - <u>Calibration</u>
- Key enabling technology
 - Large telescope arrays (CTA)
 - > 100km³ neutrino detectors
 - PID, Fast x-ray detectors

Back-up slides

• Pipelined storage = array of T/H elements, with output buffering

Real MCP-PMT Signals (with BLAB2)

Simulated Performance vs. SNR

300MHz ABW, 5.9GSa/s

IRS Input Coupling

- Input bandwidth depends on 2x terms
 fod [input] [0*=*7*C]-1
 - $f_{3}dB[input] = [2^{*}\pi^{*}Z^{*}C_{tot}]^{-1}$
 - $f_{3}dB[storage] = [2^{*}\pi^{*}R_{on}^{*}C_{store}]^{-1}$

Wilkinson Clock Generation

Wilkinson Recording

Triggering

Triggering – same as previous results

• Monitor 9th channel (uses Ch.1 threshold) to compensate for temperature dependence

Hit Processing numbers

BLAB3 ASIC

Improvements based upon Lessons learned from BLAB2

Assume: 100kHz charged track hits on each bar

~32 p.e./track (1% of 100ns windows) 30kHz trigger rate Each PMT pair sees <8> hits 240k hits/s Each BLAB3 has an average occupancy <1 hit (assume 1) 400ns to convert 256 samples 16ns/sample to transfer At least 16 deep buffering (Markov overflow probability est. < 10⁻³⁸)

Each hit = 64samples * 8bits = 512bits →~125Mbits/s (link is 3.0 Gb/s ~ x30 margin)

Plan to model in standard queuing simulator, but looks like no problem (CF have done same exercise with Jerry Va'vra for 150kHz L1 of SuperB and can handle rate)

Front-end Electronics studies

1GHz analog bandwidth, 5GSa/s

Time Difference Dependence on Signal-Noise Ratio (SNR)

G. Varner and L. Ruckman NIM A**602 (2009) 438-445**.

9 Single Threshold 8 Multiple Threshold Constant Fraction Waveform Sampling 7 6 Sampling 40 GS/s Analog bandwidth: 1.5 GHz Time resolution (ps) 3 2 40 50 60 70 80 90 100 110

J-F Genat, G. Varner, F. Tang, H. Frisch NIM A**607 (2009) 387-393**.

Simulation includes detector response

Ice Radio Sampler (IRS)

RF input coupling (S11)

P. Gorham -- measurement

Ice Radio Sampler (IRS)

P. Gorham -- measurement

WFS Evolution and Philosophy

• SAM

- **1.** Maximize dynamic range and minimize signal distorsion.
- 2. Minimize need for calibrations and off-chip data corrections.
- 3. Minimize costs (both for development & production)

• DRS family

- Get a solid, general design working
- Something that can work, in volume, for many apps

• LAB and siblings ($6 \rightarrow 8$ generations)

- Continue to explore parameter space
- Concentrate on applications where more general solutions above many not be best choice

Approaches very complementary

References

- PSI activities (DRS)
 - IEEE/NSS 2008, TIPP09
 - http://midas.psi.ch/drs
- DAPNIA activities
 - MATDAQ: IEEE TNS 52-6:2853-2860,2005 / Patent WO022315
 - SAM; NIM A567 (2006) 21-26.
- Hawaii activities
 - STRAW: Proc. SPIE 4858-31, 2003.
 - PRO: JINST, Vol. 3, P12003 (2008).
 - LABRADOR: NIM A583 (2007) 447-460.
 - BLAB: NIM A591 (2008) 534-545; NIM A602 (2009) 438-445.
 - STURM: EPAC08-TUOCM02, June, 2008.