

Argonne Laser Test Stand and DAQ Status and Plans

Ed May (HEP) LAPD Collaboration Meeting Oct 15, 2009

Outline

People Pictures Mission Methods 1 Methods 2 Pictures of Devices Sample Results Gain/Charge resolution/Calibration XY uniformity Time resolution v. light

Future

People

People who have developed and or worked with Laser Lab:

Gary Drake, John Anderson, and Camden Ertley(student) Ed May, Eugene Yurtsev(student), and Paul Drake(student) Jean-Francois Genat, Tyler Natoli(student)

What is the Laser Lab

Schematic

Laser box interior

Detector Box

Mission

- Measure properties of photo-detectors
 - Gain
 - Time and Amplitude linearity and resolution,
 - Spatial resolution and uniformity
 - Rate effects,
 - Light level and wave-length dependance.
- Can not do Quantum efficiency measurement
- Used in conjunction with setup for and analysis of Fermilab testbeam data collection.

Methods

- Based on using a precision light source and high resolution time and amplitude measurements
- Hamamatsu PicoSecond Light Pulser Laser model PLP-10
- Low noise HV source (Bertan 380N)
- Ortec high-bandwidth preamps and constant-fraction discriminators. Models 9306 1GHz preamp and 9327 1GHz amp/discriminator
- Amplitude (charge) digitization (Lecroy 2249A)
- High resolution time digitization: Ortec Model 566 TAC and AD114 13K ADC
- 3 complete and independent amplitude and time channels (\$\$\$)
- Readout via CAMAC to Linux via USB i/f (Wiener CC-USB controller)
- Computer control of 3 high precision translation stages (Newport ESP300)
- Computer control of light level via rotatable neutral density filter

Student's view of the system

Methods (continued)

- DAQ software (C/C++) based on vendor supplied USB driver for CAMAC. Controls stepping of light level and position for scans.
- Data stored ad simple CSV files. (i.e. anybody can read)
- Interactive data analysis and presenter based on JAS3(java) or JHEPWORK(jython).
- Capable of acquiring data at 5-10KHz.
- System capable of 1GHz bandwith, 8 picoSec rms time resolution, 0.25 picoCoul charge snsitivity.
- Alternate DAQ via UoC HEP Tektronics 15GHz bandwidth scope to capture wave form data. (Acquiring data and data analysis somewhat slower)
- Electronic (web based) logbook based on ELOG (Sefan Ritt)

Devices

Commercial MCP

Model #: 85011-501 SN: 12110309

10u and 20u 1024 anode MCP with transmission line readout

Can you understand your equipment e.g. neutral density filter wheel

Sample Results: PH distribution showing 1pe,2pe... at low light levels

Getting the Gain and a Light Level Calibration.

calibration check [Oct 8, 2009]

Uniformity in X and Y

What about time resolution?

What are the contributions to Observed time resolution?

Runs 1753 to 1767 (25u MCP)

Pulses from transmission line readout recorded by 15GHz Scope

Spatial Dependance and Resolution with transmission line readout

Time Resolution using Transmission Line Readout

Future

- Computer control of HV (eg USB)
- Get high sensitivity (ie better charge resolution) ADC based on Fermilab Rabbit system (capable of 10 Femto Coul)
- Get commercial 1 GHz 4 channel Waveform Digitizer (eg CAEN VME or USB based) for routine measurements.
- Issues surrounding the development/implementation of a DAQ system for readout out of the UofC/Hawaii multi GHz bandwidth waveform digitizer.
- Issues surrounding the measures of sealed 8"x8" prototypes.