Determining Pore Direction and Uniformity of Microchannel
Plates

Charles M. Rafkin and Hannah N. Tomio
Advised by Professor Henry Frisch

The Enrico Fermu Institute, University of Chicago

September 2, 2012

Abstract

We investigated how pores in a microchannel plate affect incident light by rotating an
MCP and graphing the output of a photodiode receiving light beamed through the plate.
We developed a quantitative method to determine the point at which the pores are most
aligned with the angle of incident light. After testing at various radii, our method produced
data that suggest the pores are aligned evenly throughout the MCP.

Contents
[l Introduction 4

6.1 Overviewlo 10

List of Figures

1

Wide View of Setug

3

Spectral Sensitivity of Photodi

1 Introduction

This paper will detail our investigation of the direction and uniformity of pore alignment in
microchannel plates (MCPs). In particular, we will describe our quantitative method of deter-
mining both the location of maximum pore alignment and the uniformity of pore alignment.
Using a photodiode circuit and a laser pointer, light was shone through the MCP pores and
charted the changes in voltage output across the circuit. Since the photodiode produces cur-
rent proportional to the amount of light shone upon it, the photodiode produces more current
(and thus more voltage) when the pores are aligned and less current when the MCP pores block
incident light. Using an additional circuit to produce a reference point on the oscilloscope, we
were able to calculate the distance from this reference point to the minimum voltage produced
on each period.

Some discussion of our basic assumptions is order. To begin with, we have used the absolute
sine wave function y = a |sin (%t —|—p)| — k to model the data. This is because the pores, if
uniformly aligned at a certain radius, will scatter the light as a sine wave. However, rectification
and the impossibility of representing “negative light” made it necessary to fit the function to
an absolute sine wave function. Although it is a bit nonstandard, we have chosen L and p to
represent the period and phase respectively; the function has an angular frequency, then, of 7. It
should be noted from the outset that not all of our data is a good fit with this model. Ultimately,
as our model was very good at predicting the minima of the absolute sine function, the size of
X2 over the entire curve did not matter to a significant extent. Furthur discussion of the sucesses
and failures of our method can be found in Section [7

The methodology described in this paper proved to be a successful quantitative methodology
for determining the pore alignment and uniformity of the MCP. Our method of data collection
and analysis of the data allows us to state with some confidence that the pore alignment across
the MCP we tested is uniform. Even after taking several tests with different reference points and
radii, the data show remarkably little variation in the predicted point of maximum alignment.

2 Objectives

First Objective
To determine direction and uniformity of pores in an MCP quantitatively. This was ac-
complished using the methodology to be described further in some detail.

Second Objective
To learn basic electronics, programming, and the use of WTEX. This was a summer project
completed by two high schoolers with little prior understanding of electronics or TEX.
Therefore, we devoted considerable time to preparing external research and attaining nec-
essary grounding in the material, especially Python, with which we had very little facility.

3 Methodology

1. Preparation and Setup. The initial setup consisted of placing the MCP on the exact
center of a cylinder affixed to a turntable. We moved the laser pointer, fixed at 8° from
normal and held by a Lego® arm to point light directly incident upon a photodiode (given
no interference from non-aligned MCP pores), to a certain designated radius on the MCP.

2. Data Collection. We rotated the turntable across several periods and captured the
oscilloscope’s readings of the periodic variations in output voltage. Simultaneously, using

the method for finding a reference point detailed in Section 5, the rotating plate established
a reference point and the oscilloscope collected the data from periodic pulses corresponding
to times in the initial data. We charted and captured both sets of data using the Tektronix
Oscilloscope’s built in “capture function,” which collects 10,000 data points over one image
displayed on the screen, no matter the frequency, and saves them as a Comma Separated

Value (CSV) file.

3. Data Analysis. We ran Python programs main() and refdist(). Using the output from
these programs, we generated a four parameter fit (and corresponding chart) for the abso-
lute sine wave fit

4. Pore Direction Determination. Using refdist() to analyze data gathered for many radii
across many periods, we calculated the angle of maximum alignment for a variety of data
sets. We verified the maximum alignment of the pores for a given radius and determined
that the pores were aligned across many radii.

4 Setup

Our setup consisted of a record player, a laser pointer, and Legos®. The MCP rested on a
cardboard cylinder with a radius of 1.25 inches mounted upon the record player and secured
with duct tape. The top of the cardboard cylinder was covered in electrical tape to create more
friction in order to prevent the MCP from shifting during its rotation. To the left of the record
player, our primary circuit measured the intensity of the light passed through the MCP. This
primary circuit was housed on a Lego®-made “arm” which housed the diode connected to a
breadboard that rested underneath the MCP. This circuit was powered by a power supply that
sat atop a shelf above the record player and the rest of the setup. Both circuits were connected
to an oscilloscope via probes. Our source of light, the laser pointer, was affixed to the Lego®
machine at an invariable distance from the laser pointer. Without MCP interference, the laser
pointer beamed light directly upon the photodiode.

IFor brevity, at times the fit will be described as a “sine wave fit.” This is because the method of fitting is the
same for a sine wave and its cousin, the absolute value of the sine wave function. Note, however, that the data
do not fit very nicely to a sine wave function itself.

Figure 1: Wide View of Setup

i

Figure 2: Closeup of Laser Pointer/Photodiode

Part of our setup was adjusted and then returned to its initial state. The record player
has only two speed settings; after tinkering with the gears and drive belt, we determined that
the manufacturer-set frequencies were, in fact, the record player’s optimum frequencies for our
purposes. These speeds, 32 %gfbﬁ‘t’zons and 45 ﬁszﬁ?om, were sufficiently slow to allow accurate
data reading and prevent MCP slippage on the cylindrical roll but quick enough to produce
useful data.

One challenge in the setup involved our attempt to maximize both the photodiode output
and the laser wavelength. Our photodiode was most sensitive to light at wavelength A\ = 950
nm; our laser pointer, however, only produces a wavelength A\ = 510 nm. Due to our circuit
design, we were still able to produce sufficient voltage, without “maxing out” the voltage (with

respect to the photodiode).

Figure 3: Spectral Sensitivity of Photodiode

1.0
0.8 ——+ /

0.7 |—
0.6 /

0.5 —— H Sl re—— == =

0l f———— —_—

¢ v o N (N) S S—

0.2 = S - S S

o], |

0 l I
500 600 700 BOO 800 1000 1100

E A - Wavelength (nm)

S(#),, - Relative Spectral Sensitivity

More significantly, in order to determine the alignment of the pores through data analysis,
we needed to establish a reference point for the MCP data. Initially, we placed a thin line of
tape directly on top of the MCP. Although this method certainly established a reference point,
it caused problems with our curve-fitting program, as the signal spiked toward 0 volts each time
the light passed over the black tape and thus interfered with goodness of fit tests. We ultimately
removed the tape and created a simple circuit attached to two 1.5 V batteries that only produced
a signal at one point during a rotation of the turntable. Further discussion of the circuit processes
can be found in the following section.

5 Circuitry
5.1 The Photodiode Circuit

Figure 4: Photodiode Circuit Schematics

Op-Amp
LM74
P LM741]—;
, / — 1Komp NC8
2- w7 = B
In I I I
c1 3+ Out <
0.1pF cs G6 2 c7
a1 —t 4 -V Komp 5 frm 10nF 0.1pF < 10pF
2200 A5
8.3k02 §
R4 ——
2200 =
AAA
Yy
= c2
— —0 nF
AZH i RE
Rl < 2200
2200
ca
I I 0.1pF cs
1uF
ca
10nF
= “har = =

The photodiode circuit is used to graph changes in the angle and intensity of incident light as
changes in voltage. Our photodiode circuit accepts +12 volts and —12 volts as inputs. The
photodiode generates voltage proportional to the amount of light it receives. We included a
low-pass filter, R6 and C8, to filter noise. The probe reads the voltage output after C8 and the
scope displays the reading on its screen. Due to the circuit design, the output is displayed on
the oscilloscope as a negative voltage reading that decreases in value (becomes “more negative”)
given more incident light.

5.2 The Reference Point Circuit

Figure 5: Reference Point Circuit Schematics

LEDY
Rod (633ren)}

Our simple reference point circuit only generates a signal when the “switch” is closed. The
“switch” is not a typical on/off switch, but rather a bit of wire attached to the top of the record
player, rotating with the same period as the MCP, which only connects the circuit, powered by
two “D” batteries, at one point per period. Thus, the signal produced by the circuit registers as
a series of pulses, each representing the instant when the turntable rotates past the precise point
which closed the circuit. Once we ran our Python programs and determined the distance from
the point at which the wire connects the reference point circuit to the minima of the voltage
generated, we could determine the angle of alignment of the pores. We know of no circuit symbol

that represents this method of creating a reference point, so we used a switch in the schematic
instead.

Figure 6: Closeup of Reference Point Circuit

6 Computer Programming

6.1 Overview

Our program makes use of two outside modules: PyMinuitE and PyLabH PyMinuit is a Python
module that passes low-level Minuit functionality to Python functions. It proved essential in
creating a four parameter fit to our data. PyLab allowed us to perform complicated mathematical
operations upon hundreds of (or, alternatively, 10,000) data points and graph the results with
ease.

To accomplish our objectives, we used three separate functions: a program that averages
groups of data points, a program that fits an absolute sine curve to the data points, and a
program that determines the distance from the reference point to the absolute minimum of the
data. In order to simplify the interface, the programs were all managed by the main() function.
However, since each has an entirely different purpose, they will be discussed separately.

It should be noted that, at this point in our research, the program does not compile perfectly.
There are significant bugs in the user interface and for around 30% of the tests, the PyMinuit

3PyMinuit can be downloaded at https://code.google/p/pyminuit/.
4PyLab can be downloaded at https://www.scipy.org/PyLab.

10

0~ O ULk W=

module returns inexplicable errors. Further research ought to be done to correct this malfunction.

6.2 The Central Program
6.2.1 Description

main(), the central program, asks the user a series of questions in order to determine which of
the three programs should be run. It is very flexible: the programs can be run in many different
combinations depending on the objectives of the user.

We chose to combine all the functions into a single program in order to maximize ease of use.
It is simpler for the user to call one function once than to call many functions multiple times to
accomplish the same objective. However, there are disadvantages to this approach; if the user
only wishes to call one of the functions in order to complete a simple objective, the user will still
have to progress through some of main()’s “if” logic.

6.2.2 Code

import csv

import math

import tkFileDialog
import Tkinter
import unicodedata

import pylab
import minuit

from collections import defaultdict
from operator import itemgetter

tList = []
yList = []
yEst = []
createtimelist
a, L, p, k, ¢c2 =

[l
c=
(e
()

()
(e

def main () :
Tkinter . Tk() . withdraw ()
global tList
global yList

33)

apyesorno = no
avgyesorno = raw-input (‘‘Do you want to average a file? ’’).lower()
fityesorno = raw_input(‘‘Do you want to fit to a curve? »7) . lower ()
refyesorno = raw_input (‘‘Do you want to calculate the reference distance? ’
7). lower ()
if avgyesorno == ‘‘no’’ and fityesorno == ‘‘no’’ and refyesorno =— ‘‘no’’:
graphyesorno = raw_input (‘‘Do you want to print a graph of the data?
> . lower ()
if graphyesorno == ‘‘yes’’:

thingtograph = tkFileDialog.askopenfilename ()
grapherx = createTList (thingtograph)
graphery = createYList (thingtograph)
plt . figure ()
plt.plot (grapherx, graphery, ’c’)
show ()
return
else:
print ‘‘Goodbye! "’
return

11

Here, main() determines which of the three functions the user wishes to run by using the
built in Python function “raw_input.” If the user simply wishes to print a graph of the data,
the user may do so by rejecting main()’s requests until the final raw_input.

1 if avgyesorno == ”yes” and fityesorno == "yes” and refyesorno == "yes”:
2 apyesorno = raw_input(”Do you want to average the pulses? 7))
3 if apyesorno = "yes”:

4 print ”Please choose the file (of pulses) you’d like to average!”
5 pulsestoaverage = tkFileDialog.askopenfilename ()

6 pulses = Averagecsv (pulsestoaverage)

7 print ”"Next we need the signal file.”

8 if avgyesorno == ”yes”:

9 print ”Please choose the file you want to average.”

10 toaverage = tkFileDialog.askopenfilename ()

11 tobefittedfile = Averagecsv(toaverage)

13 tList = createTList (tobefittedfile)

14 yList = createYList (tobefittedfile)

15 tListancient = createTList (toaverage)

16 yListancient = createYList (toaverage)

17 plt.figure ()

18 plt.plot(tListancient , yListancient , ’c’)

19 plt.plot(tList , yList, 'k’)

20 show ()

21 if fityesorno == ”no”:

22 return tobefittedfile

23 if avgyesorno == "no”:

24 print ”Please choose the file you want to fit to sine.”

25 tobefittedfile = tkFileDialog.askopenfilename ()

26 tList = createTList (tobefittedfile)

27 yList = createYList (tobefittedfile)

28 filereader = csv.reader (open(tobefittedfile , 'r’), delimiter = ’,")
29 fitter (filereader)

30 if refyesorno == ”yes”:

31 if apyesorno = "yes”:

32 refdist (pulses)

33 else:

34 refdist (None)

After determining which of the programs it should to run, main() asks the user to select the
files in question (using Python module Tkinter) and runs the programs.

6.3 The Averaging Program
6.3.1 Description

The first function we designed, called AverageCSV(), computes the average of a group of user-
defined datapoints. Since the Tektronix Oscilloscope produces a 2-column dataset with the first
column representing the time and the other indicating the corresponding voltage, we designed
the program to accept a 2-column CSV. The program asks the user to select the document that
needs to be averaged and saves a new CSV file that averages both the time and voltage values
in a user-specified range. For instance, given a set of 10,000 data points, if the user commands
AverageCSV() to average 50 data points, the program will produce a set of 200 data points.
The first datapoint (t, V)in the new CSV file represents (the average of the first 50 t values, the

12

O U W N

10
11
12
13
14
15
16
17

18
19

20
21
22
23

24
25
26

27
28
29

30

31
32

average of the first 50 V values). If the total number of initial data points is not evenly divisible
by the number chosen as the amount of data points to average (i.e., if one chose to average every
35 points of a total of 10,000), the program averages the remainder and prints it as the final data
point in the set.

The program proved useful in noise-reduction and helped create a better fit with main().
Although we did reduce a significant amount of the noise by modifying our setup (using toroids,
shorter wires, better circuit design, etc.), noise reduction proved difficult due to the noise pro-
duced by the motor of the record player. Newer oscilloscope models have similar programs built
into their interface for this purpose.

6.3.2 Code

def AverageCSV (toaverage):
Tkinter . Tk() . withdraw ()
while True:
try:
avgnum = int (raw_input (¢ ‘How many data points do you want to average
together?)
break
except ValueError:
print ‘‘Please enter a number!’’
finalfile = raw_input (‘‘What should the name of the new file be? >
print ‘‘Where should this file be saved? 7
saveplace = tkFileDialog.askdirectory ()
csvfile = csv.reader (open(toaverage, ’'rb’), delimiter=",")
newfile = open(saveplace+’/’+finalfile , 'w’)
csvwriter = csv.writer (newfile, delimiter = ’,7)
count = []
for row in csvfile: #changes your datapoints to a single list ,with collumn 1
being count evaluated at even numbers and collumn 2 being the count
evaluated at odd numbers
count += row
for n in range(0, len(count), 2xavgnum): #this creates data points again, and
averages both collumns (in groups of however many you input)
sum = [0.0, 0.0]

if n + (2xavgnum—1) <= len (count):
for i in range (0, 2%avgnum, 2):
sum = [(sum[0] + float (count[n + i])), (sum[1l] + float (count[n + i
+1]))]
averagel = [sum[0]* float (avgnum)s*x(—1), sum[1l] * float (avgnum)s**(—1)

J

csvwriter . writerow (averagel)

elif n + (2xavgnum—1) > len (count): #for the last few datapoints, might
not be exact number correct left over. this takes the average of those
left and puts them im correct collumn .

remainder = len(count) — n
for j in range (0, remainder — 1, 2):
sum = [(sum[0] + (float(count[n + j]))), (sum[1l] + float (count|[n +
1+ 3))]
average2 = [(sum[0]* float ((remainder * .5)*x(—1))), (sum[1l] =

float ((remainder * .5)%x(—1)))]
csvwriter . writerow (average2)
return saveplace + ‘‘/’7 + finalfile

13

6.4 Fitting Program
6.4.1 Description

fitter(), the Sine Fitting Program, accepts a CSV file and minimizes the chi-square of the best
four parameter fit of the function y = a |sin (%t +p)| — k to the list of averaged data. The

n) 2
chi-square goodness of fit test is defined as X2 =y (y’”“5(’:}’;;1;2253”‘”) . When the chi-square
k=1

is minimized, the output parameters a, L, p, and k best fit the function to the data.

There are two main sections of fitter(). The first section interprets the data and determines
good estimates for the PyMinuit function migrad(), which will minimize the chi-square. The
second section runs migrad() and minimizes the four parameter chi-square fit. PyMinuit is not
perfect: it can erroneously claim a relative minimum for the chi-square is the best fit. The risk
of PyMinuit malfunctioning is reduced significantly if it is given good estimates.

fitter() has some bugs that should be worked out in the future. In particular, the program
is designed under the assumption that it is being fed files that have already been returned by
AverageCSV(), and so cannot fit a function to the measured data, because it gets thrown off
quite easily by outliers. It also assumes the data looks like ours (with a negative vertical shift,
a period between 1 and 2, and data that looks much like an absolute sine wave to begin with).

6.4.2 Code
def createTList (filename): ## given a path to a csvfile, this function returns a
list of the t wvalues (z wvalues) in the csvfile
csvfile = csv.reader (open(filename, ’'rb’), delimiter = ’,)
count = []
tlist = []
for row in csvfile:
count += row
for point in range(len(count)):
if point % 2 =— 0:
tlist 4+= [count [point]]
return tlist
def createYList (filename): ## given a path to a csvfile, this function returns a
list of the y walues in the csvfile
csvfile = csv.reader (open(filename, ’'rb’), delimiter=",")
count = []
ylist = []
for row in csvfile:
count += row
for point in range(len(count)):
if point % 2 = 1:
ylist 4= [count [point]]
return ylist

These two simple functions accept a CSV file that is usually created after the user runs
main() to locate the file to be fitted to a sine wave. createTList() returns a list of the time
values. createYList() returns a list of the voltage values. These functions, like the rest of the
functions other than AverageCSV() and refdist(), are not intended to be called outside of main().

1| def createsortedy (xlist , yListorig, count): ## given a list of z wvalues, a list of

y values, and a list containing both z and y values, this function sorts the
list containing both wvalues by the y values

14

O O 00O U kW

[y

[\

S UL W

© 00~ U WN

12

13
14
15

counter = |[]
bigcount = []
for row in range (1, len(count), 2):

bigcount += [(float (count[row — 1]), float (count[row]))]
newsortedlist = sorted (bigcount, key = itemgetter (1))
timeusable = float (newsortedlist [0][0])

yusable = float (newsortedlist [0][1])

return timeusable, yusable, newsortedlist, float(newsortedlist [0][0])

This function uses a method involving Python dictionaries and tuples to sort a list of ordered
pairs (x, y) by the y values. For example, given the x list (1, 2, 5) and the y list (3,2,7), the
function assumes the pairs are linked and sorts them as [(2,2), (1,3) (5,7)]. It returns the time
at the absolute minimum of the data, the y value at the minimum, the list of sorted values,
and the time at the absolute minimum of the function (later defined as the variable “timezero”).
The time at the absolute minimum is returned twice because any data point could be chosen to
represent “timeusable” and “yusable,” but the time value at the minimum is necessary, regardless
of the point chosen, to calculate an estimate for the phase.

def chi2(a, L, p, k): ## creates a chi—square from global tList and yList using a
given amplitude , period, phase, and wvertical shift
global c2
c2 =0
for i in range(len(tList)):
c2 4= abs(((float (yList[i]) — (a * float(abs(sin(pi * (Lxx(—1)) = float(
tList[i])4+p))) — float(k)))*x2) * (25))
return c2

This function returns the chi-square of the four-parameter fit of the function y = a |sin (%t + p) | — k.

Note that since our circuit design produces a negative value for the vertical shift, k is defined
in main() as positive in order to produce an accurate vertical translation of the function. The
variance estimate is assumed to be random over all points and is estimated at around 200 mV,
or .2 V (note: .22 = .04). Although there are some problems with the chi-square test, especially
its assumption that errors will vary normally, it provided a superior fit.

def fitter (csvfile):

count = []
helper =
period = 0
timelist2 (]
time2 = 0

for row in csvfile:
count += row

timeusable, yusable, newsortedlist, timezero = createsortedy (tList, yList,
count)

for point in range(len(count)):
if abs(float(count[point — 1]) — timeusable) > 1 and abs(float (count|point

— 1]) — timeusable) < 2 and point % 2 != 0:
timelist2 += [(float (count[point — 1]), abs(float (count[point]) —
yusable))]

sortedfinalpoints = sorted (timelist2 , key = itemgetter (1))
if len(timelist2) >= 1:
time2 float (sortedfinalpoints [0][0])

15

16
17
18
19

20
21
22
23
24

25

26
27
28
29
30

00~ O U= W

if 1

en(timelist2) = 0:
while True:

try:
rangedistance = float (raw_input(‘‘Give a bigger range distance!
b 7))
break
except ValueError:
print ‘‘Please enter a number!’’

for point in range(len(count)):
if abs(float (count[point]) — yusable) < rangedistance and abs(float (

count [point — 1]) — timeusable) > 1 and abs(float (count|[point —

1]) — timeusable) < 2 and point % 2 != 0:

timelist2 4= [(float (count[point — 1]) ,abs(float (count[point])) —
yusable) |

sortedfinalpoints = sorted (timelist2 , key = itemgetter (1))
time2 = sortedfinalpoints [0][0]

period = abs(timeusable — time2)

phas

e = —pi * (period*x—1) % timezero

Here,

fitter() accepts the output variables from createsortedy() and uses them to find a

distance from local minimum to local minimum in the data. This distance, the period, is set as
the variable “period.” An estimate for the phase can be found given the time when the function
is minimized. Given the function y = a ‘sin (%t —|—p)‘ — k, if ¢, equals the minimum of the

function,

then when y = —k:

. (T
y:asm(ftn—i—p)‘—k
7r
0=asin (Tt +)|

a (s T +p
™
0=—t,
it
7r
p:_ztn

Through this method, fitter() computes the phase using the previously determined values for

t, and L.
amaxl = []
aminl = []
period2 = int (period * abs(((float (tList[0])) — float (tList[1]))**(—1)))
for n in range(0, len(yList) — period2, period2):
amax2 = float (yList [0])
amin2 = float (yList [0])
for j in range(n, n + period2):
if amax2 < float (yList[j]):
amax2 = float (yList[j])
if amin2 > float (yList[j]):
amin2 = float (yList[j])
aminl += [amin2]
amaxl += [amax2]
suml = []
sum2 = 0
for i in range(len (amaxl)):

suml += [abs(float (str (amax1[i])) — float (str(aminl[i])))]

16

20

22
23
24
25
26
27

for i in range(len(suml)):

sum?2 4+= float (suml[i])
vertshifthelper = 0
for i in range(len (amaxl)):

vertshifthelper += float (str (amaxl[i]))
myvar = vertshifthelper * len (amaxl)sx—1
amplitude = sum2 x (len (amaxl)**x(—1))
vertshift = (amplitude + abs(myvar))

In this section, fitter() computes the average of the amplitudes (omitting the final one because

it created such problems with the remainder that we relied on PyMinuit to smooth out the errorsﬁ
defined as the distance between minima and maxima. Then, as it can be shown that k ~ —¢

27
main() uses its calculation of the amplitude to determine an estimate for the vertical shift.

00 O U= W

23
25
26
27
29
30

31
32

33

m = minuit.Minuit (chi2)
m. strategy = 0
m.values[‘‘a’’
m. values [¢ ‘L’
m. values [‘‘p’’
m. values [‘‘k’’

] amplitude
] = period

| = phase

] vertshift

m. printMode = 1
m. migrad ()

m. hesse ()

.errors|[¢
.errors|[*
.errors | ¢
.errors | ¢

aerr =
Lerr =
perr =
kerr =
global
global
global
global
global yEst

global createtimelist

a, L, p, k =m.values[‘‘a’’], m.values[‘‘L’’], m.values[‘‘p’’], m.values[‘‘k’’

~o e

o e BEEE

createtimelist = arange(float (tList [0]) ,float (tList[—1]),.01)

yBEst = []

for t in createtimelist:
yEst 4= [a x abs(sin(pi * (Lxx(—1)) * float(t) 4+ p)) — abs(k)]

plt. figure ()

plt.plot (tList , yList, 'b’)

plt.plot(createtimelist , yEst, ’r

title (‘“‘y = 77 4+ str(round(a, 3))
7+ str(round(p, 3)) + ‘)|
+ str(round(c2, 3)))

sign = unicodedata.lookup ("PLUS-MINUS SIGN ’)

print ‘‘amplitude = '’ + str(round(a, 3)) + sign + str(round(aerr, 3)) + ¢
period = ’’ + str(round (L, 3)) + sign + str(round(Lerr, 3)) + ‘¢ phase =~
* + str(round(p, 3)) + sign + str(round(perr, 3)) + ¢ vertical shift =
+ str(round(k, 3)) + sign + str(round(kerr, 3)) + ‘¢ chisquared = ’’ +
str (round (c2, 3))

show ()

)

)
+ ““Isin((pi/’’ + str(round(L, 3)) + ‘‘)*x +
— 77 + str(round(k, 3)) + ‘¢ chisquared = ’~’

Next, fitter() creates a Minuit object and feeds migrad() its estimates for the amplitude, period,
phase, and vertical shift. migrad() then determines the minimum chi-square for those parameters

5% should be around equal to the y coordinate of the midpoint of between the minima and the maxima.

17

[y

O UL W N

O © 00

and hesse() returns an error estimate for each parameter. MatPlotLib graphs the fitted curve
alongside the averaged data, and Python prints the estimates for the four parameters, the error
estimate, and the chi-square.

6.5 Reference Point Program
6.5.1 Description

The reference point program refdist() determines the average distance for each period from the
pulse created by our reference point circuit to the minima of the function, when the MCP pores
allow most of the incident light to pass through to the photodiode. There were some challenges in
designing the program. It is difficult to find the time values for periodic minima in Pylab and to
generate proper values for the list of points evaluated at the fitted function. In addition, because
they occur at different points in one period of the function, it is possible to have more of either
pulses or minima than the other, which creates problems appending lists when iterating over set
ranges. However, we were eventually able to write a program that, although not bug free, was
sufficient for our purposes. As this code is also relatively lengthy, more specific comments will
again be presented after each major portion of the function.

6.5.2 Code

overlay e averaged reference point pulses onto fitted curve o ata an

l th d int l t itted dat d
determine the average time from the reference point to the minima of the
fitted function .

def refdist (pulses):

Tkinter . Tk() . withdraw ()

if pulses is None:
print ‘‘What is the name of the averaged pulses you want to overlay?
pulses = tkFileDialog.askopenfilename ()

xpulses = createTList (pulses)

ypulses = createYList (pulses)

plt. figure ()

plt.plot (xpulses, ypulses, 'r’)

plt.plot(createtimelist , yEst, ’c’)

show ()

Initially, refdist() asks the user to select the file of pulses the user wishes to use as a reference
point and graphs the reference points alongside the function itself.

listofpulses = []
for x in range(len(xpulses)):

listofpulses += [xpulses[x]] + [ypulses[x]]
while True:

try:

lowerbound = float (raw_input(‘‘Give a lower bound for the size of the
pulses)

break

except ValueError:
print ‘‘Please enter a number!’’

18

11

13
14
15
16
17
18
19
20

00~ O U W

=W N =

o Ot

-3

10
11
12
13

15
16
17
18
19

bigcount = []

for a in range(l, len(listofpulses), 2):

bigcount += [(float (listofpulses[a—1]), float(listofpulses|a]))]
newsortedlist = sorted (bigcount, key = itemgetter (1))
unsortedsixxpulses = []

for i in range(len(newsortedlist)):
if float (newsortedlist [i][1]) > float (lowerbound):
unsortedsixxpulses += [newsortedlist [1][0]]
sixxpulses = sorted (unsortedsixxpulses)

refdist() accepts a CSV file of pulses averaged for the same number of points as its companion file
which measures the output from the photodiode circuit and creates a list of tuples (x,y) of points
greater than a certain user-designated value (the size of the pulse can vary). It then creates a
new list of time values for the reference point pulses sorted in ascending order.

helper = []

functionminimumtimes = []

sinewavelist = []

for x in arange(float (xpulses[0]),float(xpulses[—1]),.0001):
sinewavelist += [(x, axabs(sin(pi*(L*x(—1))*x + p)) — abs(k)

absoluteminimum = float (sorted (sinewavelist , key = itemgetter (1))

mylistl = []

mylist2 = []

for i in arange(absoluteminimum, float(xpulses[—1]), float(L)):

)]
[0]f0])

mylistl 4= [1i]

for n in arange (absoluteminimum , float(xpulses[0]), —float(L)):
mylist2 += [n]

sortedsixsinewavepoints = sorted (mylistl + mylist2[1:])

For every .0001 seconds, refdist() evaluates the function y = a |Sin (%t + p)| — k within the
total domain of the dataset. Then, using the absolute minimum of these evaluated values and
the period, the function writes a list of the time values at each of the minima.

refdist ()

print ‘‘the times when it pulses are: ’’ + str(sixxpulses)

print ‘‘the times when it is at a minimum are ’’ 4+ str(sortedsixsinewavepoints
)

print ‘‘pulses length = ’’ + str(len(sixxpulses))

print ‘‘sortedsixsinewavepoints length = '’ 4 str(len(sortedsixsinewavepoints)
)

if len(sixxpulses) != len(sortedsixsinewavepoints):
print ¢ ‘WATCH OUT! IT’S LIKELY SOMETHING WENT WRONG — THE LENGTHS ARE

DIFFERENT’ ’
myrange = min(len (sixxpulses), len(sortedsixsinewavepoints))

for x in range(myrange):

helper += [float (sortedsixsinewavepoints [x]) — float (sixxpulses[x])]
if sum(helper) >= 0:

average = float (sum(helper)*((myrange)*x(—1)))
if sum(helper) < 0:

average = float (L — abs(sum(helper)*((myrange)*x(—1))))

standarddeviation = std (helper)

19

20 print ‘‘average x distance from pulse to minimum = ’’ + str(round (average ,4))

+ ‘“ or '’ 4 str(round(((average=*360)*(Lxx(—1))), 4)) + ‘¢ in degrees’’
21 print ‘‘the standard deviation of the differences between pulse and minima is
’? 4 str(round(standarddeviation, 6)) + ‘¢ or '’ 4 str(round (((

standarddeviation *360) «(L**(—1))), 4)) + ‘¢ in degrees’’

Finally, the function calculates and prints the average difference and standard deviation in
time between the pulses and minima of the function and converts the difference into to degrees.
Because of a small chance of some bugs arising, the function writes certain error warnings and
the lists of the times of the pulses and minima to ensure the user is aware of possible issues
should they arise.

20

7 Determining Pore Direction and Uniformity

7.1 A Closer Look at the Data

After rotating the MCP and capturing a set of periods, the readings on the oscilloscope usually
resembled the following:

Figure 7: An Example Test
-0.5 ; :

1.0 B

—-3.0 L L L L L
—6 -4 -2 0 2 4 6

As is evident by Figure[7 the data are noisy, but readable: it is identifiable that the data fit
to some function at a certain period, although it is unclear if the function fits very well to a sine
wave.

After averaging every 50 data points, our data produced the following chart:

Figure 8: An Averaged Example Test
-0.5 . . : ; .

-1.0 B

=15} 4

-3.0 1 1 1 L L

21

The plot of the data after every fifty points have been averaged together is overlaid in black
upon the data plotted in light green. It is clear that the averaged data produce a more easily
comprehensible graph. Beyond simple readability and ease of understanding, averaging the data
reduces the effects of outliers, a necessity for fitter().

7.2 Modeling the Data

Using our model, we were able to generate signals and chart data averaged using the program
AverageCSV() alongside the model generated using fitter(). In some cases, our model produced
very accurate results. For example, using a different data set:

Figure 9: y = 1.768 |sin (12t + 8.473)| — 2.852 ; x* = 31.601
-1.0 T T T T

-15F

=B -4 -2 o 2 4 6

As Figure [@ makes clear, the X2 for the averaged data is relatively low; in this case, the
average error &~ .066 volts. The model is very accurate: for the vast majority of points on the
curve, with the notable exception of the minima, the function can accurately predict the output
of the circuit.

22

However, our model was a poorer fit for other data. For example:

Figure 10: y = .959 |sin (1455t + 2.387)| — .889 ; x* = 151.963

0.2 T

0.0

-18!

At this point in our research, it is unclear why the model fits so poorly to the data for this
test. The test cannot be discarded as an exception; for many tests, especially after we finalized
the setup and methodology, the model is not a good predictor of output voltage.

However, this does not mean the model should be discarded. The purpose of this paper, after
all, was not to find the perfect model of the data; were we to do so, we would likely need to add
separate trigonometric terms using Fourier methods to come to a more precise model for the
data. Rather, we sought to predict the distribution and uniformity of the pores, for which we
solely required a good indicator of the period. As demonstrated by Figure 2, the model does give
a good estimate for the period: the yellow vertical lines, added afterward in Photoshop, should
illustrate that the minima of the data correspond very closely with the minima of the function.

One improvement suggested to us by our advisor Professor Henry Frisch was that the model
may be “upside-down.” That is, the function might not be best modeled by the absolute value
of the sine wave, but rather by a rectified sine wave (with outputs of negative voltage, rather
than positive voltage). Although this concept does seem intuitively logical — the function should
not be producing values at all when it is receiving “negative light” — it may not be supported
very well by our data, which do seem to fit to some sort of adjusted sine wave. We therefore
recommend further investigation into the exact nature of the scattering of the light by the MCP
pores.

23

7.3 Results

Having developed a model for the data, we sought to overlay the model with the measured
reference point pulses. Recall our method for creating a reference point: we built a separate
circuit that closed only once every period of the turntable rotation and measured the voltage
output of this circuit. The voltage output, then, registers as a series of pulses. Each pulse
represents the instant of time during which the circuit was closed and thus when the turntable
had rotated past a certain point. The output registered as such:

Figure 11: Reference Point Signal Overlaid Upon Photodiode Signal

1.0 T T T

0.8 | 1

0.6 | 1

0.4} .

0.0 |

~0.2 I L I I

24

Having established a reference point, we overlaid the the battery-generated reference point
pulses upon the photodiode circuit’s data for the same reading;:

Figure 12: Pulse Signal Averaged by AverageCSV()

0.5 T T T

oob A A Ak

-1.0} | | \ l" | (| | \ (| 1

-1.5¢} | ||‘ | V] | | 1

-25¢} {f |/ '|'|

-3.0! : :

From the data, the program refdist() will determine the distance from reference point to
minima of the fitted absolute sine function. It will print this average distance both as a time,
in seconds, and as an angle as measured from the center of the MCP. The printout represents
the distance from the reference point to the minima. Taken over many periods, the program will
also provide the standard deviation of the distance from reference point to minima.

After the first trial with an arbitrary reference point, our method produced the following
results, as analyzed by refdist(). It ought to be noted that for all following results, our confidence
in the results produced by refdist() has been compromised due to the aforementioned PyMinuit
bug that unfortunately prevented running main() on certain averaged data. PyMinuit would
run, however, if the data were averaged for a different number; for example, if PyMinuit would
not compile the data averaged for every 50 points, we tried running PyMinuit on the data
averaged for every 35 points (or 100 points, etc.). This is not a perfect method of solving the
bug: on data PyMinuit analyzed properly, changing the number of points averaged together by
AverageCSV() did change the predicted angle of maximum alignment, albeit sightly. In other
words, in prioritizing PyMinuit, we have introduced another independant variable that interferes
with the data. However, in an effort to present our collected data, we have chosen to display the
data regardless. The data averaged by a number other than 50 (our standard averaging number)
is marked with a *. Additionally, during the course of Trial 1 although we were able to analyze
each of the data, we did not collect data at 2.75 inches.

25

Figure 13: Trial 1 Data Collection

Trial Number Radius Predicted Angle of | Standard Deviation of
(inches) | Maximum Alignment | the Predicted Angle

1 2.25 318.528° 0.9628°
2.50 301.1093° 0.2674°
3.00 321.6216° 0.1806°
3.25 323.0961° 2.68°
3.50 331.8311° 2.84°

| Standard Deviation | | 11.27° |

Although imperfect, the data in Trial 1, presented in Figure[I2 have a standard deviation of only
11.27°, or around 3.1%[8 Further trials, each with a different reference point, produced even
stronger datafl

Figure 14: Trials 2-4 Data Collection

Trial Number Radius Predicted Angle of | Standard Deviation of
(inches) | Maximum Alignment | the Predicted Angle

2 1.50 340.0° 0.0°
1.75 342.8489° 3.2046°
2.00 340.0° 0.0002°
2.25 339.2867° 2.3735°
2.50 346.6492° 3.1044°
2.75 339.9999° 0.0°

| Standard Deviation | | 2.83° |

4 1.25 350.2739° 2.5068°
1.50%* 345.7405° 5.225°
1.75 348.8171° 2.5711°
2.00 349.1841° 3.0863°
2.25%* 347.2011° 1.9633°
2.50 350.9265° 2.8887°
2.75% 353.4072° 5.4967°
3.00* 354.1921° 4.457°
3.25% 355.8248° 2.9145°
3.50* 355.478° 1.3287°
3.75 351.5267° 3.2822°

| Standard Deviation | | 3.32° |

60f a full 360°.

"During the course of Trial 3, the MCP was knocked and reference point shifted and thus only three data
points were gathered. These points were not analyzed using the computer program — regardless of the results,
three points would not be enough to establish either a pattern or a reversal of a pattern. Therefore, we have
chosen to omit this trial.

26

The data suggest that the angle of maximum pore alignment does not vary with the radius,
but instead remains at a constant angle throughout the MCP. As should be made clear by
Figure [[4] the standard deviations for the predicted angle of maximum pore alignment for both
Trial 2 and Trial 4 are both below 3.5°for a number of radii. The variation in the predicted
angle of maximum alignment appears sufficiently low as to be explained by inaccuracies in our
methodology and programming analysis, rather than by non-uniformity in pore alignment.

8 Conclusion

We have attempted to illustrate our quantitative method for determining the angle of maximum
pore alignment for an MCP and have explained our use of this method to furnish evidence that
the pores in an MCP are aligned throughout its radii. Given that the completion of this project
was impossible due to a variety of constraints, we offer the following recommendations for further
research:

Improve Setup Design and Methodological Accuracy. As Figure[lland Figure[@indicate,
our setup, partially comprised of Legos® and duct tape, may result in built-in imprecisions.
For example, our use of Legos® made perfectly aligning the laser pointer to shine light upon
the photodiode exceedingly difficult; it is uncertain that the MCP was centered directly
upon the cardboard cylinder resting on the turntable (which was, itself, likely imperfectly
centered); the motor from the turntable generated enough noise to require us to build
an external computer program to eliminate it (and thus reduce accuracy); our reference
point circuit did not merely produce a signal for one data measurement; etc. There were
also methodological inaccuracies that could be eliminated, particularly the inaccuracy in
measurement of the incident light from the photodiode upon the MCP (as the precise
location of the light was difficult to determine).

Fix main(). That main() inexplicably throws PyMinuit errors for certain readings of the oscil-
loscope is deeply troubling. However, after struggling with the code for many hours, we
simply have not been able to come to a perfect solution to the Python errors. We feel
confident that those with more extensive computer science background would be able to
resolve the errors quickly. Our solution to the problem — simply to input a different value
into AverageCSV() — is imperfect at best, as different values inputted into AverageCSV()
change the inputs for fitter and thus create slightly different predicted minima, introducing
another source of uncertainty into refdist().

Improve fitter(). As has been detailed at length throughout the paper but particularly in
section [l our model did not consistently provide a good (or even passable) fit to the
data. Although we were able to work around the model’s substantial problems, a model
with a much-reduced X2 — and an explanation for the theoretical grounding of the model
— would be a substantial addition to our understanding of the MCP pore distribution.

Collect More Data. Time constraints in particular have prevented us from performing a suffi-
cient number of trials to truly establish the uniformity in alignment of the MCP pores. The
three trials we have presented should merely be used as a springboard for further inquiry.

27

References

[1] Frisch, Henry. “The Development of Large-Area Pico-second Photodetectors.” Presenta-
tion, SLAC National Accelerator Laboratory, June 15, 2012, accessed July 2 2012,
http://hep.uchicago.edu/~frisch/talks /SLAC_v7.pdf.

[2] Horowitz, Paul, and Winfield Hill. The Art of Electronics. New York: Cambridge University
Press, 1989.

[3] Vishay Semiconductors, Silicon PIN Photodiode, Fig. 5 - Relative Spectral
Sensitivity vs. Wavelength, November 29, 2011, accessed July 2, 2012,
http://www.ml.com/annualmeetingmaterials /2007 /ar/pdfs /2008 Proxy.pdf.

28

http://hep.uchicago.edu/~frisch/talks/SLAC_v7.pdf
 http://www.ml.com/annualmeetingmaterials/2007/ar/pdfs/2008Proxy.pdf

	Introduction
	Objectives
	Methodology
	Setup
	Circuitry
	The Photodiode Circuit
	The Reference Point Circuit

	Computer Programming
	Overview
	The Central Program
	The Averaging Program
	Fitting Program
	Reference Point Program

	Determining Pore Direction and Uniformity
	A Closer Look at the Data
	Modeling the Data
	Results

	Conclusion

