

Detector configuration

Schematic of an MCP detector

- Photon/ion/atom/neutron counting
- \bullet XY coordinates (<20 $\,\mu m$) and timing (<130 ps) information for each registered particle
- Selective detection of ions, electrons, photons
- Count rate ~MHz with 10% dead time
- •No dark/readout noise!

Detector hardware implementations

Experimental setup

A. S. Tremsin, et al., IEEE Trans. Nucl .Sci. 54 (2007) 706.

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

Timing resolution

A. S. Tremsin, et al., IEEE Trans. Nucl .Sci. 54 (2007) 706.

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

Time histograms for different films

Only elastic scattering

Both elastic and inelastic scattering are present

A. S. Tremsin, et al., IEEE Trans. Nucl .Sci. 54 (2007) 706.

Time histograms & images: photons vs. electrons

Photons detected, electrons repelled by input mesh

Time window selected for only electron detection

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

SLAC, D

Images: electrons from different peaks

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

Entire histogram

Diffusion of electrons between the adjacent bunches can be studied with the detection system

W. E. Byrne, C.-W. Chiu, J. Guo, F. Sannibale, J.S. Hull, O.H.W. Siegmund, A. S. Tremsin , J.V. Vallerga Proceedings EPAC'06, Edinburgh, June 2006

Linearity of measured timing

Measured timing histogram of electron pulses separated by 10 ns.

A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.

Spatial resolution: photons and electrons

Phothon image Full field illumination 25 mm active area Mesh with 250 µm rectangular cells

Cross section of electron image 25 µm wires are resolved

Electrons imaged 25 µm wires on 250 µm grid resolved

A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.

Spatial resolution of MCP detectors

•XDL readout

Very linear images
Resolutions ~25µm FWHM
Large Formats (10cm x 10cm)
Event rates ~0.5 MHz

100 µm

•XS readout •Very high resolution ~12 μm FWHM @ <100 kHz ~20 μm FWHM @ few MHz

•CMOS readout •Resolution ~55µm FWHM •Very high event rates >1 GHz

MCP thermal runaway

$$\begin{split} R_{\text{MCP}}(T_{\text{MCP}}, V_{\text{MCP}}) \\ &= R_0 [1 - \alpha_v V_{\text{MCP}}] \exp\{-\beta_T (T_{\text{MCP}} - T_0)\}, \quad (1) \qquad \alpha_T = 0.015 \ C^{-1} \\ \text{where } R_0 \text{ is the resistance of MCP measured at } V_{\text{MCP}} = 0 \ \text{V} \\ \text{and temperature } T_{\text{MCP}} = T_0. \end{split}$$

Stable operation when $Q_{\text{joule}} = Q_{\text{rad}} + Q_{\text{cond}}$.

$$Q_{Rad} = \frac{\pi \cdot D_0^2}{4} \cdot \sigma \cdot \epsilon \cdot (T_{MCP}^4 - T_A^4) \quad \epsilon \text{ the effective thermal emittance } (\epsilon = 0.4)$$

heat dissipation from the MCP of only 0.015 $W \cdot cm^{-2}$ for T_{MCP} = 70 °C

A.S. Tremsin et al., Proc. SPIE **2808** (1996) pp.86-97. A.S. Tremsin et al., Nucl. Instr.Meth. **379** (1996) pp.139-151.

FIG. 6. Calculated resistance of a 40:1 L/D 25 mm diam silica MCP with 6 μ m pores (mounted in a chevron stack) as a function of MCP bias $V_{\rm MCP}$ for different values of initial resistance R_0 . The initial resistance determines the maximum voltage, which can be applied to the MCP without inducing a thermal runaway.

FIG. 7. Calculated temperature of silica MCP as a function of time after V_{MCP} is increased from 0 to a given voltage, indicated on the graph. MCP parameters are as in Fig. 2. For voltages below ~ 800 V the MCP reaches the thermal equilibrium in a few minutes.

Count rate limitation per illuminated area

Gain drop as a function of event rate for six different sized holes illuminated with 2537Å light. 60mm MCP Z stack.

R = 600 MΩ/cm², initial gain ≈1 x 10⁷. R = 120 MΩ/cm², initial gain ≈3 x 10⁶.

Count rate limitation is dependent on the area illuminated: larger area can sustain less counts per pore!

O.H.W. Siegmund and Joseph M. Stock, Proc. SPIE 1549, 81 (1991)

MCP gain reduction effect: ageing under irradiation

Uniform flat field image

Result of 06_Not...

Long integration image Gain~10⁵ Rate >10 MHz/cm² Accumulated dose ~0.01 C/cm²

Almost uniform flat field illumination

No preconditioning of the detector was performed

Normalized by initial flat field

MCP gain reduction effect: ageing under irradiation

Rate ~ 3 MHz/cm²

Accumulated dose

~0.001 C/cm²

UV photons

No preconditioning of the detector was performed

Optimization of counting rate

Timing histogram of detected photons. Secondary peak (~50 ns delayed) seen.

Only portion of image is enabled. The rest of events are ignored.

A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.

Bioimaging applications (FRET, FLIM, etc)

Astrophysics and Earth observing missions

ImageWIC1

Other applications: neutron imaging

In collaboration with Nova Scientific, Inc. Sturbridge, MA, SLAC, December 9, 2009

Other applications: strain mapping

In collaboration with Nova Scientific, Inc. Sturbridge, MA,

Other applications: magnetic field imaging

SLAC, December 9, 2009

In collaboration with Nova Scientific, Inc. Sturbridge, MA,

Possible MCP improvements

- •Novel MCP substrates (micromachined)
- Increased lifetime
- •Engineered conduction and emission layers
- •Controlled saturation and resistance profile (higher dynamic range by offset of saturation to higher input currents)
- •Better uniformity / spatial resolution
- •Novel photocathode materials / opaque mode / photocathode
- •Withstand much higher processing temperature
- •Very Low noise

Silicon MCP Geometry

Top view of a hexagonal pore MCP with ~7µm pores showing >75% open area

Square pore MCP 2 kx

6 µm

Diamond photocathode on Si MCP

Small grain polycrystalline diamond photocathode

Larger grain diamond photocathode

MCPs with nano-engineered films

Applied over commercial glass MCPs:

50:1 L/D, 4.8 μm pores, ~250 $M\Omega$ resistance

5x-10x gain increase

D. R. Beaulieu, et al., Nucl. Instr. Meth. A 607 (2009) 81.

SLAC, December 9, 2009

Photograph of the phosphor screen. Full field illumination image. MCP is irradiated by a uniform electron flux.

Arradiance, Inc, Sudbury, MA

Nano-engineered conduction and emission films

- Stable resistance
- Typical exponential gain increase with bias
- Good gain ~ 40000 at 1000V bias
- Good TCR (comparable to glass MCP values)

D. R. Beaulieu, et al., Nucl. Instr. Meth. A 607 (2009) 81.

Arradiance, Inc, Sudbury, MA

ALD MCP Technology

MCP performance tied to glass composition

ALD:

- Device optimization is de-coupled from substrate.
- Semiconductor processes & process control.
- Materials engineering at the nanoscale
- Functional films composed of abundant, non-toxic materials.
- Advantages:
 - High conformality (>500:1)
 - Scalable to large areas
 - Digital thickness control
 - Pure films
 - Control over film composition
 - Low deposition temperatures (50-300°C)

Arradiance, Inc, Sudbury, MA

 Thin film growth that relies on selflimiting surface reactions

- Gas A reacts with a surface
 - excess precursor & reaction byproduct removed.
- Gas B is introduced to the evacuated chamber – reacts with surface bound A
 - excess precursor & reaction byproduct removed.
- Repetition of A B pulse sequence to build film layer-by-layer

