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Schematic of an MCP detector

Charge cloudCharge distribution on strips

MCP 
Pair

Detector configurationDetector configuration

• Photon/ion/atom/neutron 
counting 

• XY coordinates (<20  µm ) 
and timing (<130 ps) 
information for each registered 
particle

• Selective detection of ions, 
electrons, photons

• Count rate ~MHz with 10% 
dead time

•No dark/readout noise!
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Detector hardware implementationsDetector hardware implementations
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Experimental setupExperimental setup

Synchrotron generated 
photon pulses

~ 70 ps wide, 2 ns apart

2D Imaging +
time for each

detected photon

Scattered photons

Thin film samples

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

A. S. Tremsin, et al., IEEE Trans. Nucl .Sci. 54 (2007) 706.
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Timing resolutionTiming resolution

Elastically scattered photons

0

50

100

150

200

250

300

0 2 4 6 8 10

Time delay (ns)

C
ou

nt
s

0

1000

2000

3000

4000

5000

6000

7000

8000

0.7 0.8 0.9 1 1.1 1.2 1.3

Time (ns)

Ph
ot

on
 c

ou
nt

s

Measured
Gaussian fit
55 ps RMS

Timing accuracy 55 ps RMS 
(130 FWHM)

A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.

A. S. Tremsin, et al., IEEE Trans. Nucl .Sci. 54 (2007) 706.
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Time histograms for different filmsTime histograms for different films

Both elastic and inelastic 
scattering are present

Only elastic scattering
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Time histograms & images: 
photons vs. electrons

Time histograms & images: 
photons vs. electrons
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Images: electrons from different peaksImages: electrons from different peaks

Only region I

Only region II

Only region III

Entire histogram
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A. S. Tremsin, et al., Nucl. Instr. Meth. A 580 (2007) 853.
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Synchrotron bunch diffusionSynchrotron bunch diffusion

Bunch population after injection

Diffusion of electrons between the adjacent bunches can be studied 
with the detection system

Bunch population ~76 min later

W. E. Byrne, C.-W. Chiu, J. Guo, F. Sannibale, J.S. Hull, O.H.W. Siegmund, A. S. Tremsin , J.V. Vallerga
Proceedings EPAC’06, Edinburgh, June 2006
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Linearity of measured timingLinearity of measured timing

Measured timing histogram of electron 
pulses separated by 10 ns. 
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A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.
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Spatial resolution: photons and electrons Spatial resolution: photons and electrons 
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Phothon image
Full field illumination 

25 mm active area
Mesh with 250 µm rectangular cells

Electrons imaged
25 µm wires on 250 µm grid resolved

Cross section of electron image
25 µm wires are resolved

A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.



SLAC, December 9, 2009

Spatial resolution of MCP detectorsSpatial resolution of MCP detectors

•XDL readout
•Very linear images
•Resolutions ~25µm FWHM
•Large Formats (10cm x 10cm)
•Event rates ~0.5 MHz

•XS readout
•Very high resolution 
~12 µm FWHM @ <100 kHz
~20 µm  FWHM @ few MHz •CMOS readout

•Resolution ~55µm FWHM
•Very high event rates >1 GHz
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MCP thermal runawayMCP thermal runaway

Stable operation when 

A.S. Tremsin et al., Proc. SPIE 2808 (1996) pp.86-97.
A.S. Tremsin et al., Nucl. Instr.Meth. 379 (1996) pp.139-151.
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Thermal Stability of MCPsThermal Stability of MCPs

A.S. Tremsin et al., Rev. Sci. Instr. 75 (2004) pp.1068-1072
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Count rate limitation per illuminated areaCount rate limitation per illuminated area

Count rate limitation is dependent on the area illuminated: 
larger area can sustain less counts per pore!
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R = 600 MΩ/cm2, initial gain ≈1 x 107. 

O.H.W. Siegmund and Joseph M. Stock, Proc. SPIE 1549, 81 (1991)

Gain drop as a function of event rate for six different sized holes illuminated 
with 2537Å light. 60mm MCP Z stack. 

R = 120 MΩ/cm2, initial gain ≈3 x 106. 
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MCP gain reduction effect: ageing under irradiationMCP gain reduction effect: ageing under irradiation

Uniform flat field
image

Long integration image
Gain~105

Rate >10 MHz/cm2

Accumulated dose
~0.01 C/cm2

Almost uniform 
flat field illumination

Normalized by initial
flat field

No preconditioning of the detector was performed
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MCP gain reduction effect: ageing under irradiationMCP gain reduction effect: ageing under irradiation

14 mm

Uniform flat field
image (neutrons)

Resolution mask image
Gain~105

Rate ~ 3 MHz/cm2

Accumulated dose
~0.001 C/cm2

Almost uniform 
flat field illuminaiton

UV photons

No preconditioning of the detector was performed

Preconditioning is required for stable gain operation!

It is always done during standard tube manufacturing process.
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Optimization of counting rateOptimization of counting rate

Enabled events

Gate

Arriving 
photons 

(one axis)

Only portion of image is enabled. 
The rest of events are ignored.
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Timing histogram of detected photons. 
Secondary peak (~50 ns delayed) seen. A. S. Tremsin, et al., Nucl. Instr. Meth. A 582 (2007) 168.
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Bioimaging applications (FRET, FLIM, etc)Bioimaging applications (FRET, FLIM, etc)



SLAC, December 9, 2009

Astrophysics and Earth observing missionsAstrophysics and Earth observing missions

ImageWIC1
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Other applications: neutron imagingOther applications: neutron imaging

In collaboration with Nova Scientific, Inc. Sturbridge, MA,In collaboration with Nova Scientific, Inc. Sturbridge, MA,
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Other applications: strain mappingOther applications: strain mapping

1

2
3

4

14 
m
m

0

100

200

300

400

500

600

700

800

900

-1500 -1000 -500 0 500 1000 1500

Strain values (µε)

Co
un

ts

NoLoad

0

50

100

150

200

250

300

-1500 -1000 -500 0 500 1000 1500

Strain values (µε)
Co

un
ts

Load3

In collaboration with Nova Scientific, Inc. Sturbridge, MA,In collaboration with Nova Scientific, Inc. Sturbridge, MA,
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Other applications: magnetic field imagingOther applications: magnetic field imaging

N. Kardjilov et al., Nature Phys. 4 (2008) 399–403

Magnetic field produced by 3 kHz 
AC current in a coil imaged

In collaboration with Nova Scientific, Inc. Sturbridge, MA,In collaboration with Nova Scientific, Inc. Sturbridge, MA,
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Possible MCP improvementsPossible MCP improvements

•Novel MCP substrates (micromachined)

•Increased lifetime

•Engineered conduction and emission layers

•Controlled saturation and resistance profile (higher dynamic 
range by offset of saturation to higher input currents)

•Better uniformity / spatial resolution

•Novel photocathode materials / opaque mode / photocathode

•Withstand much higher processing  temperature

•Very Low noise
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Silicon MCP GeometrySilicon MCP Geometry

Top view of a hexagonal pore 
MCP with ~7µm pores 
showing >75% open area

Square pore MCP 2 kx 6 µm
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Diamond photocathode on Si MCPDiamond photocathode on Si MCP

Small grain polycrystalline 
diamond photocathode

Larger grain 
diamond photocathode
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MCPs with nano-engineered filmsMCPsMCPs with with nanonano--engineered filmsengineered films
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Applied over commercial glass MCPs:
50:1 L/D, 4.8 µm pores, ~250 MΩ resistance

5x-10x gain increase

Photograph of the phosphor screen.
Full field illumination image. 

MCP is irradiated by a uniform electron flux. 

Arradiance, Inc, Sudbury, MAD. R. Beaulieu, et al., Nucl. Instr. Meth. A 607 (2009) 81.
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Nano-engineered conduction and 
emission films

Nano-engineered conduction and 
emission films

Stable resistance
Typical exponential gain increase with bias
Good gain ~ 40000 at 1000V bias
Good TCR (comparable to glass MCP values)

10 µm pore NO LEAD glass substrate, 40:1 L/D, R~280 MΩ,
gain under electron bombardment
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Arradiance, Inc, Sudbury, MAD. R. Beaulieu, et al., Nucl. Instr. Meth. A 607 (2009) 81.



SLAC, December 9, 2009

MCP performance tied to glass 
composition

ALD:
Device optimization is de-coupled 
from substrate.  
Semiconductor processes & 
process control.
Materials engineering at the 
nanoscale
Functional films composed of 
abundant,non-toxic materials.
Advantages: 

– High conformality (>500:1)
– Scalable to large areas 
– Digital thickness control
– Pure films
– Control over film composition
– Low deposition temperatures (50-300°C)

Thin film growth that relies on self-
limiting surface reactions
Gas A reacts with a surface 

– excess precursor & reaction by-
product removed.

Gas B is introduced to the evacuated 
chamber – reacts with surface bound 
A

– excess precursor & reaction by-
product removed.

Repetition of A – B pulse sequence to 
build film layer-by-layer

ALD MCP TechnologyALD MCP Technology
Vapor inlets

Deposition
region

Alternating layers

A

B

Arradiance, Inc, Sudbury, MA


