Large area photo detectors

Current Future -

Large H,0 Cherenkov
detectors planned:;
~$200M in photo tubes;
reduce cost
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Lépton Flavor Physics

Hermetic TOF Water anode
Cherenkov Detector MCP photodetector
(Howard Nicholson) photocathode
cherenkov cone \’ =
Fharged_ current \ oy _
interaction vertex \ b ot '-'rr“"-'"
v
e - measurement of photon
position and time v

- Example- DUSEL detector with 100% coverage and 3D
photon vertex reconstruction.

 Need >10,000 square meters (!) (100 ps resolution)

« Spec: signal single photon, 100 ps time, 1 cm space,
low cost/m2 (5-10K$/m2)*

* Hermetic DUSEL specs TBD
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* 4 National Labs

« 5 Divisions at Argonne

« 3 US small companies

* electronics expertise at
Universities of Chicago and
Hawaii

3 Universities (several more

in pipeline)

Goals:

« exploit advances in material
science and nanotechnology to
develop new, batch methods for
producing cheap, large area
MCPs.

» To develop a commercializable
product on a three year time
scale.
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Anatomy of an MCP-PMT

Photocathode
Multichannel Plates
Anode (stripline) structure
Vacuum Assembly
Front-End Electronics

bk~

1

Conversion of photons to electrons.

Slide by Matt Wetstein
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Photocathode
Microchannel Plates
Anode (stripline) structure
Vacuum Assembly
Front-End Electronics

bk~

Amplification of signal. Consists of two
plates with tiny pores, held at high potential

- - difference. Initial electron collides with pore-
K / walls producing an avalanche of secondary
electrons. Key to our effort.

Slide by Matt Wetstein
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Anatomy of an MCP-PMT

Photocathode
Microchannel Plates
Anode (stripline) structure
Vacuum Assembly
Front-End Electronics

bk~

1

Charge collection. Brings signal out of

vacuum.

5-8 Oct, 2009

Slide by Matt Wetstein
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Anatomy of an MCP-PMT

Photocathode
Microchannel Plates
Anode (stripline) structure
Vacuum Assembly
Front-End Electronics

bk~

Maintenance of vacuum. Provides

> mechanical structure and stability to the
/ complete device.

5-8 Oct, 2009

Slide by Matt Wetstein
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Anatomy of an MCP-PMT

Photocathode
Microchannel Plates
Anode (stripline) structure
Vacuum Assembly
Front-end electronics

bk~

1

Acquisition and digitization of the signal.

5-8 Oct, 2009

Slide by Matt Wetstein
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Y

ELECTRICAL
POTENTIAL
:

SEMICONDUCTING
LAYER

ELECTRODE

Conventional MCP Fabrication

* Pore structure formed by drawing and
slicing lead-glass fiber bundles. The glass
also serves as the resistive material

» Chemical etching and heating in hydrogen
to improve secondary emissive properties.

» Expensive, requires long conditioning, and
uses the same material for resistive and
secondary emissive properties. (Problems
with thermal run-away).

5-8 Oct, 2009

S-—

s OuUTPUT
GLASS ELECTRONS
CHANNEL

PRIMARY \ |
RADIATION SECONDARY
ELECTRONS

ALD Approach

Separate out the three functions

» Cheap passive substrate to provide pore
structure.

» Separate resistive coating
» Separate secondary emissive coating

» Use ALD: a cheap industrial batch
method. Hand-pick materials to optimize
performance.

Karen Byrum — CTA Zu
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Atomic Layer Deposition

« A conformal, self-limiting process. A)
* Allows atomic level thickness control. R

» Applicable for a large variety of

materials. B)

ALD Thin Film Materials
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« Oxide « Element «Carbide

« Nitride ) - Fluoride

« Phosphide/Arsenide Dopant
Sulphide/Selenide/Telluride « Mixed Oxide
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Channel Plate Fabrication w/ ALD

pore

1. Start with a cheap, porous,
insulating substrate that has
appropriate channel structure.

borosilicate glass filters Anodic Aluminum Oxide (AAO)
(default)

Slide by Matt Wetstein
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Channel Plate Fabrication w/ ALD

pore

1. Start with a cheap, porous,
insulating substrate that has
appropriate channel structure.

borosilicate glass filters Anodic Aluminum Oxide (AAO)
(default)

2. Apply a resistive coating (ALD)

Slide by Matt Wetstein
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Channel Plate Fabrication w/ ALD

pore

1. Start with a cheap, porous,
insulating substrate that has
appropriate channel structure.

@ Alternative ALD Coatings:

borosilicate glass filters Anodic Aluminum Oxide (AAO) N At . ALO

(default) Conventional MCP’s: / N
51 5 /6
_ , . i0, ‘ ALD SiO,also
2. Apply a resistive coating (ALD) g S10: fe ( 2150)
g o EE / T, MgO

3.  Apply an emissive coating (ALD) —*
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Slide by Matt Wetstein
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Channel Plate Fabrication w/ ALD

pore

1. Start with a cheap, porous, —
insulating substrate that has
appropriate channel structure.

@ Alternative ALD Coatings:

borosilicate glass filters i i i A

(defaul) Anodic Aluminum Oxide (AAQ)  Gonventional MCP's: 5»7. /‘“"\i ALO,

2. Apply aresistive coating (ALD) ;o S10; e / (ALD S, glso)
R - 11— oo
. . . — > gvg w§ 3

Apply an emissive coating (ALD) i %7{; S ;- / ]
4.  Apply a conductive coating to the sl ’ 1 //\ Zn0

top and bottom (thermal ’ / T

0 02 04 06 08 1 12 14 16 18 2
Electron energy, KeV

evaporation or sputtering)
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Photocathode Fabrication

/ Default Position \ In parallel with conventional photo-cathode
N , , techniques, pursue more novel photocathode

- Scale traditional bi-alkalai technologies.
photocathodes to large area
detectors. « Nano-structured photocathodes:

J Necessary resources and » Reduction of reflection losses (light trap)
expertise available at * Heterogeneous structure permits multi-
Berkeley SSL. functionality (electrically, optically, electron-

k / emission, “ilon-etching resistant”)

* Increased band-gap engineering capabilities
Photo—electron Photo—elegtron . . oy .
_ 1 f » Expertise and know-how of multi-billion industry
Photon absorption E—Field
(IR-detectors)

electron  source

Glass substrate

Photons
(from the back)

» Pure-gas fabrication

Cross section of pillar: Photon » Would greatly streamline
Work function adju I'CO—coating (ZnO?) .
manufacturing process and reduce
) costs
- e Aot Y Slide by Matt Wetstein
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~

Default Position N\

U

Use ceramic assemblies,
similar to those used by
conventional MCPs.

Well developed technology,

e = |
\
-
T e
o \
rei

y

Looking into sealed glass-panel technologies
(flat screen TVs). Device construction must:

« Maintain 50Q impedance through vacuum seal

» Avoid damage to photocathode during assembly

« Maintain integrity of channel plates, spacersAllow for vacuum tight
sealing of outer “envelope” across uneven surfaces of varying
composition

» Be able to handle high pressure and mechanical stress.

Working with various glass vendors and experts on these.

know-how available at SSL / - ! e w—

Slide by Matt Wetstei
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Front End Electronics

» Started as collaboration between U of Chicago and Hawaii.

 Resolution depends on # photoelectrons, analog bandwidth,
and signal-to-noise.

» Wave-form sampling is best, and can be implemented in low-
power widely available CMOS processes (e.g. IBM 8RF). Low
cost per channel.

* 48-inch Transmission Line- simulation shows 1.1 GHz
bandwidth- still better than present electronics, ie readout for
a 4-foot detector is same as a small one!

- . . « Transmission Line- readout both

Tube Outline 58x58mm £5ong -

ends=> pos and time
« Cover Iargne areas with much

5 : _ reduced channel account.

- 1‘ s l\sllmlglelﬂ'll'ri?smr)\ldld
—————— ultiple Thresholds
£ L e Constant fraction . US Patent
S15 'y ———  Pulse sampling
= N, : .
El W Chip submitted to MOSIS --
oot L e Sampling: 40 GS/s ] IBM 8RF (0.13 micron
o .~ "~ Analog bandwidth: 1.5 GHz CMOQOS)- 4-channel prototype. [
£ ~ 2 Plan on 16 channels/chip-
F = :
? possibly 32 later.
o

l Matt Wetstei
Number of photoelectrons Slide by Matt Wetstein
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Early Achievements

/ \ Comparison of MCP Amplification

w1p® Before and After ALD Coating
° 1 1 I I I : I EBefore IALD Coatlin
Using our electronic front end and ! ey

striplines with a commercial
1 I‘4 1.I5 1 |6 1 I? 1 IB 1.I9 2I

Is

e
T

Photonis MCP-PMT, were able to
achieve 1.95 psec timing, 97 um
position resolution.

=
=

o

» Now capable of quickly producing 33
mm ALD coated samples.

)

» Rapid development of testing
capabilities underway.

Mean # of Electrons Collected on a Single Strip
P

» Preliminary results at APS show 2
amplification in MCP after ALD Voltage Across the MCP (k)
coating! « After characterizing the Photonis MCP, we coat the
plates with 10 nm Al,O.
« Some early collaboration between + The “after-ALD” measurements have been taken
Qmulation and testing groups.j without scrubbing.
» These measurements are ongoing.

Slide by Matt Wetstei
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Simulation

Working to develop a first-
principles model to predict MCP

i —

] T T L e P VT e e
‘2%, T I e A = = i
35
H

behavior, at device-level, based TTS
on micrOSCOpiC parame’[ers_ Comparison of TTS for direct and titlted channels
0.7 -
. =0
Will use these models to T o e e
. c
understand and optimize our 58 o5 =T
. =B —a— 5=10°
MCP designs. 23 :
g9 0.4
. . =]
Trajectories R RER
TTS simulation, Esef?Z tf‘}l, direct channel, Gain = 1/4 = .g .E
I alecnen \\fz;{’,,/eﬁssing mode™ Tt 07/ ¥ = 01 - y
TTS simulation, E::o=2 eV, tiltec;) 7.5°, Gain = 143 j A L
[ e T L= =y 0.0 s . T
3 | 40 80 120 160 200 240 280
damd | dtrelesen Switching to hopping mode
e o 200 400 600 800 1000 transmiSSion time, ps

TTS simulation, Esec=2 eV, tilted 10° channel, Gain = 3730

Well-defined hopping mode

400
Z, pm

Slide by Matt Wetstein
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Testing and Characterization

Microscopic/Materials-Level Macroscopic/Device-Level
4 Material Science Division, ANL N Hep Laser Test Stand, ANL )

Fast, low-power laser, with fast scope.

XPS....
Built to characterize sealed tube detectors,
Study ALD samples, microchannel plates, and front-end electronics.
and photocathodes on a microscopic

\ materials-level. Y, KHigth Automated )

/ Berkeley SSL \ / Advanced Photon Source, ANL \

Decades of experience. Fast femto-second laser, variety of optical

Wide array of equipment for testing — | resources, and fast-electronics expertise.

individual and pairs of channel plates. Study MCP-photocathode-stripline systems
close to device-level. Timing characteristics

Infrastructure to produce and characterize lificat
\ @ variety of conventional photocathodes. \2mP! ication etc. -

Slide by Matt Wets
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Tiling a CTA Camera

e« (CTA 12m D-C camera dimensions:
274.32x274.32 cm? (English: 9'x9)

» Default Large Area MCP-PMT dimensions:8”x8”
(20.3x20.3 cm?)
« dimension and pixel size can be adjusted
to application

« strip line readout option has Smmx10mm
dead space at edge for sidewall frame = —
and strip connection to electronics. ‘ | : " v

« frame can be reduced

 pixel readout option would remove
space dedicated to electronics

« package several MCP substrates

into single module further reduces Strip line would be replaced

dead space with pixel array
*  One camera option:

« 13x13 array of MCP-PMT
e 20.3x20.3cm? with 2.5mm sidewall

Slide by Bob Wagner




Panel Module Option for CTA Camera

« Advanced containment option for continuous
strip line readout 9-FAVEL MoroLE

« Bottom/sidewall tray containing several
MCPs to reduce dead space

« Would require larger assembly enclosure
« if vacuum, expensive
« if glove box, quite reasonable

» plan to test photocathode effects for
exposure to pure inert gas
 For CTA 4x4 panel module with
22.5%22.5cm? MCP panels, 2mm gap btw
panels, 5mm sidewall

Tile modules in 3x3 array for camera Concept for module
- Requires consideably more development enclosing many MCP panels
work.

Slide by Bob Wagner
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Conclusions

(LAPPD Collaboration is well on its way. Lots of work remains.\

Preliminary achievements are encouraging.

« May make photo-detection significantly cheaper.
* Reduce bottom-line manufacturing costs
« Economic impacts of new vendor/alternative in the market

Lessen the neutrino-community’s dependence on a single vendor.

* If successful, this project presents a unique opportunity to think
about how to do an analysis in a Water Cherenkov Detector.

* New set of trade-offs.

\\ * Lots of room for out-of-the-box thinking. /

Slide by Matt Wetstein
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Backup Slides
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