Large area photo detectors

Current
From sensors like this

Future
Something like this

Major goals:
- Use modern material science techniques
- Fast timing, order of ~psec
- Large area coverage i.e. reduce price
- (Re)establish knowledge base within labs
- Transfer technology to companies

Karen Byrum, CTA Meeting Zurich
• **Example-** DUSEL detector with 100% coverage and 3D photon vertex reconstruction.
• **Need >10,000 square meters (!) (100 ps resolution)**
• **Spec: signal single photon, 100 ps time, 1 cm space, low cost/m2 (5-10K$/m2)**

* Hermetic DUSEL specs TBD
The Development of Large-Area Fast Photo-detectors

High Energy Physics Division
Argonne National Laboratory, Argonne, Illinois 60439

Bernhard Alon, Klein Atzioninder
Advanced Photon Source Division
Argonne National Laboratory, Argonne, Illinois 60439

Zeye Horvath
Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, Illinois 60439

Jeffrey Elson, Joseph Zitzer
Energy Systems Division
Argonne National Laboratory, Argonne, Illinois 60439

Michael Pollin, Igor Veresov, Hui Wang, Alexander Zamore
Materials Science Division
Argonne National Laboratory, Argonne, Illinois 60439

David Bondhus, Neil Stillman, Ken Stenton
Auriance Inc., Sudbury, MA 07796

Marko Bogdan, Henry Fischl, Jean-Christos Georgi, Mary Heinta, Richard Northrop, Estelle Tong

Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637

Erik Hamborg, Anoukhi Hoshkian, Greg Stiller
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

James Kennedy, Kurth Nishimura, Marc Horan, Larry Ruckman, Gary Turner
University of Hawaii, 2505 Correa Road, Honolulu, HI, 96822

Robert Atzmann, Valentin Blum, Thomas Roberts
Masscomp Inc., 600 N. Hamilton Avenue, Waltham, MA 02451

Jerry Volders
SLAC National Accelerator Laboratory, Menlo Park, CA 94025

Donald Skopinsky, Anton Tverskoi
Space Sciences Laboratory, University of California, Berkeley, CA 94720

Bartlomiej Ruskевич
Sybrand Technologies Inc., Arundel, MD 20601

David Forbes, Weicheng Zhao
Department of Physics, University of Washington, Seattle, WA 98195

5-8 Oct, 2009
Karen Byrum – CTA Zurich

• 4 National Labs
• 5 Divisions at Argonne
• 3 US small companies
• electronics expertise at Universities of Chicago and Hawaii
• 3 Universities (several more in pipeline)

Goals:
• exploit advances in material science and nanotechnology to develop new, batch methods for producing cheap, large area MCPs.
• To develop a commercializable product on a three year time scale.
Anatomy of an MCP-PMT

1. Photocathode
2. Multichannel Plates
3. Anode (stripline) structure
4. Vacuum Assembly
5. Front-End Electronics

Conversion of photons to electrons.
Anatomy of an MCP-PMT

1. Photocathode
2. Microchannel Plates
3. Anode (stripline) structure
4. Vacuum Assembly
5. Front-End Electronics

Amplification of signal. Consists of two plates with tiny pores, held at high potential difference. Initial electron collides with pore-walls producing an avalanche of secondary electrons. Key to our effort.
Anatomy of an MCP-PMT

1. Photocathode
2. Microchannel Plates
3. Anode (stripline) structure
4. Vacuum Assembly
5. Front-End Electronics

Charge collection. Brings signal out of vacuum.
Anatomy of an MCP-PMT

1. Photocathode
2. Microchannel Plates
3. Anode (stripline) structure
4. Vacuum Assembly
5. Front-End Electronics

Maintenance of vacuum. Provides mechanical structure and stability to the complete device.
Anatomy of an MCP-PMT

1. Photocathode
2. Microchannel Plates
3. Anode (stripline) structure
4. Vacuum Assembly
5. Front-end electronics

Acquisition and digitization of the signal.

Slide by Matt Wetstein
Channel Plate Fabrication

Conventional MCP Fabrication

- Pore structure formed by drawing and slicing lead-glass fiber bundles. The glass also serves as the resistive material.
- Chemical etching and heating in hydrogen to improve secondary emissive properties.
- Expensive, requires long conditioning, and uses the same material for resistive and secondary emissive properties. (Problems with thermal run-away).

ALD Approach

Separate out the three functions

- Cheap passive substrate to provide pore structure.
- Separate resistive coating
- Separate secondary emissive coating
Atomic Layer Deposition

- A conformal, self-limiting process.
- Allows atomic level thickness control.
- Applicable for a large variety of materials.

ALD Thin Film Materials

- **Element**
- **Oxide**
- **Nitride**
- **Phosphide/Arsenide**
- **Sulphide/Selenide/Telluride**
- **Carbide**
- **Fluoride**
- **Dopant**
- **Mixed Oxide**

5-8 Oct, 2009 Karen Byrum – CTA Zurich
Channel Plate Fabrication w/ ALD

1. Start with a cheap, porous, insulating substrate that has appropriate channel structure.

- borosilicate glass filters (default)
- Anodic Aluminum Oxide (AAO)
1. Start with a cheap, porous, insulating substrate that has appropriate channel structure.

2. Apply a resistive coating (ALD)
Channel Plate Fabrication w/ ALD

1. Start with a cheap, porous, insulating substrate that has appropriate channel structure.
 - borosilicate glass filters (default)
 - Anodic Aluminum Oxide (AAO)

2. Apply a resistive coating (ALD)
3. Apply an emissive coating (ALD)
Channel Plate Fabrication w/ ALD

1. Start with a cheap, porous, insulating substrate that has appropriate channel structure.

2. Apply a resistive coating (ALD)

3. Apply an emissive coating (ALD)

4. Apply a conductive coating to the top and bottom (thermal evaporation or sputtering)
Photocathode Fabrication

In parallel with conventional photo-cathode techniques, pursue more novel photocathode technologies.

- Nano-structured photocathodes:
 - Reduction of reflection losses (light trap)
 - Heterogeneous structure permits multi-functionality (electrically, optically, electron-emission, “ion-etching resistant”)
 - Increased band-gap engineering capabilities
 - Expertise and know-how of multi-billion industry (IR-detectors)

- Pure-gas fabrication
 - Would greatly streamline manufacturing process and reduce costs
Device Assembly

Default Position

- Use ceramic assemblies, similar to those used by conventional MCPs.
- Well developed technology, know-how available at SSL

Looking into sealed glass-panel technologies (flat screen TVs). Device construction must:

- Maintain 50Ω impedance through vacuum seal
- Avoid damage to photocathode during assembly
- Maintain integrity of channel plates, spacers
- Allow for vacuum tight sealing of outer “envelope” across uneven surfaces of varying composition
- Be able to handle high pressure and mechanical stress.

Working with various glass vendors and experts on these.
LAPPD Collaboration: Large Area Picosecond Photodetectors

Front End Electronics

- Started as collaboration between U of Chicago and Hawaii.
- Resolution depends on # photoelectrons, analog bandwidth, and signal-to-noise.
- Waveform sampling is best, and can be implemented in low-power widely available CMOS processes (e.g. IBM 8RF). Low cost per channel.
- 48-inch Transmission Line simulation shows 1.1 GHz bandwidth—still better than present electronics, i.e. readout for a 4-foot detector is same as a small one!

- Transmission Line readout both ends=> pos and time
- Cover large areas with much reduced channel account.
- US Patent

Chip submitted to MOSIS -- IBM 8RF (0.13 micron CMOS)- 4-channel prototype. Plan on 16 channels/chip possibly 32 later.

Slide by Matt Wetstein

5-8 Oct, 2009 Karen Byrum – CTA Zurich
Early Achievements

- Using our electronic front end and striplines with a commercial Photonis MCP-PMT, were able to achieve 1.95 psec timing, 97 µm position resolution.
- Now capable of quickly producing 33 mm ALD coated samples.
- Rapid development of testing capabilities underway.
- Preliminary results at APS show amplification in MCP after ALD coating!
- Some early collaboration between simulation and testing groups.

After characterizing the Photonis MCP, we coat the plates with 10 nm Al₂O₃.
- The “after-ALD” measurements have been taken without scrubbing.
- These measurements are ongoing.
Simulation

• Working to develop a first-principles model to predict MCP behavior, at device-level, based on microscopic parameters.

• Will use these models to understand and optimize our MCP designs.
Testing and Characterization

Microscopic/Materials-Level

Material Science Division, ANL

- XPS....
- Study ALD samples, microchannel plates, and photocathodes on a microscopic materials-level.

Berkeley SSL

- Decades of experience.
- Wide array of equipment for testing individual and pairs of channel plates.
- Infrastructure to produce and characterize a variety of conventional photocathodes.

Macroscopic/Device-Level

HEP Laser Test Stand, ANL

- Fast, low-power laser, with fast scope.
- Built to characterize sealed tube detectors, and front-end electronics.
- Highly Automated

Advanced Photon Source, ANL

- Fast femto-second laser, variety of optical resources, and fast-electronics expertise.
- Study MCP-photocathode-stripline systems close to device-level. Timing characteristics amplification etc.
Tiling a CTA Camera

- CTA 12m D-C camera dimensions: 274.32×274.32 cm² (English: 9’×9’)
- Default Large Area MCP-PMT dimensions: 8”×8” (20.3×20.3 cm²)
 - Dimension and pixel size can be adjusted to application
 - Strip line readout option has 5mm×10mm dead space at edge for sidewall frame and strip connection to electronics.
 - Frame can be reduced
 - Pixel readout option would remove space dedicated to electronics
 - Package several MCP substrates into single module further reduces dead space
- One camera option:
 - 13×13 array of MCP-PMT
 - 20.3×20.3 cm² with 2.5mm sidewall

Strip line would be replaced with pixel array

Slide by Bob Wagner
Panel Module Option for CTA Camera

- Advanced containment option for continuous strip line readout
- Bottom/sidewall tray containing several MCPs to reduce dead space
- Would require larger assembly enclosure
 - if vacuum, expensive
 - if glove box, quite reasonable
 - plan to test photocathode effects for exposure to pure inert gas
- For CTA 4x4 panel module with $22.5 \times 22.5 \text{cm}^2$ MCP panels, 2mm gap btw panels, 5mm sidewall
 Tile modules in 3×3 array for camera
- Requires considerably more development work.

Concept for module enclosing many MCP panels

Slide by Bob Wagner
Conclusions

• LAPPD Collaboration is well on its way. Lots of work remains. Preliminary achievements are encouraging.

• May make photo-detection significantly cheaper.
 • Reduce bottom-line manufacturing costs
 • Economic impacts of new vendor/alternative in the market

• Lessen the neutrino-community’s dependence on a single vendor.

• If successful, this project presents a unique opportunity to think about how to do an analysis in a Water Cherenkov Detector.
 • New set of trade-offs.
 • Lots of room for out-of-the-box thinking.
Backup Slides