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Overview: Motivation

Hermetic TOF Water anode
Cherenkov Detector MCP photodetector
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Water Cherenkov neutrino detector (DUSEL) ~80-90%
Complete particle measurement: E, p + m(PID) coverage and 3-d photon vertex reconstruction

1ps time & 1mm space resolution, $100k/m? 100ps time & 10mm space resolution, $10k/m?
Time-of-Flight in PET TOF (Effective Efficiency) Gain
for Whole-Body PET (35 cm)
mmm Hardware At (ps) TOF Gain
¢ =30 cmins BGO Block Detector 3000 0.8
500 ps timing resolution » Can localize source along line :
= 7.5 cm localization of flight. LSO Block (non-TOF) 1400 1.7
4 \\ » Time of flight information L 50 Elock {TOF) 2 Ll
| reduces noise in images. LaBr,; Block 350 6.7
4 + Variance reduction given by La6Slde Coupled 5l S
‘_HD . 2Dl cAt. LSO Small Crystal 210 11.1
- 500 ps timing resolution Lul; Small Crystal 125 18.7
éi 5X reduction in variance! LaBr; Small Crystal 70 33.3

_ +Incredible Gains Predicted
|« Time of Fliaht Provides a Huae Performance Increase!| - Nothing Else Can Give Us Gains of This 5ize!
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Overview: Micro Channel Plates PMTs
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Photocathode Multichannel Plates Anode (stripline) structure

Photon and electron paths are short - few mm to microns which results in fast,
uniform Planar geometry, scalable to large areas
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MCP Development Multichannel Plates

/
/




MCP Development: Simplifying MCP Construction

Conventional Pb-glass MCP

Chemically produced and treated

B Pb-glass provides 3 functions:

— Provides pores

— Resistive layer supplies electric field in

the pore

— Pb-oxide layer provides secondary

electron emission

Incom Glass Substrate

Separate the three functions:

B Hard glass substrate provides pores

B Separate Resistive and Emissive layer
functions

B Produce Tuned Resistive Layer
(Atomic Layer Deposition, ALD)
provides current for electric field;

B Specific Emitting layer provides
secondary electron emission
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MCP Development: Glass Capi"ar'y Substrate
Development

Incom

B Glass substrate development, fabrication,
finishing by Incom, Inc. (Charlton, MA, USA)

B Borosilicate glass capillary

B Disk development substrates produced in
guantity (for R&D)
— 32.8mm diameter
— 20um pore L/D=60
B All substrate pores have 8° bias w.r.t axis L to
substrate
B Used in pair chevron configuration to
reduce positive ion feedback damage to
photocathode

B First four 8°x8” 20um pore substrates
delivered Aug 2010




MCP Development: Atomic Layer Deposition

Argonne, Arradiance

ALD Thin Film Materials
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*A Conformal, Self'“mltmg Process. J. Elam, A. Mane, Q. Peng, T. Prolier (ANL:ESD/HEP),

N. Sullivan (Arradiance), A. Tremsin (Arradiance, SSL)

e Allows atomic level thickness control.

* Applicable for a large variety of materials.

Poster by Anil Mane on ALD and LAPPD project: Thur Conf. 8031




MCP R&D : Channel Plate Fabrication w/ ALD

1. Start with a porous, insulating substrate
that has appropriate channel structure.
Inco
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MCP R&D : Channel Plate Fabrication w/ ALD

pore
1

2. Apply aresistive coating (ALD)

* Good control of resistivity
* Uniform, smooth coating w/no etching

* Functionalized pair exhibited high gain

- Scalable to large surface

1.E+15 /

Workable resistivity

1 E+12 range for 33mm MCP o——
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MCP R&D : Channel Plate Fabrication w/ ALD

pore
3. Apply an emissive coating (ALD)
Conventional MCP’s:
5
—Fitforexp. [1.7]
4.5 ¢ Bxp Lead-Silicate galss reduced in H2, R=1.2e7 Ohm [1.2]) [
4 ——Exp. Bendix Channel MP (1577] [3] B

SiO,
/,_._\ Alternative ALD Coatings:
7
3 :

2.5 / P s N Al,O4

2+ | VAN
1.:) /f // MF‘H | / (ALD SiO, also) \

Secondary electron emission
coefficient

- 4
/ S MgO
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) [2] A M. Tyutikoy, Sov. Phys. Uspekhi 13 (1970) p.204. g 3
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MCP R&D : Channel Plate Fabrication w/ ALD

p
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4. Apply a conductive coating to the
top and bottom (thermal evaporation
or sputtering) 1 Ky
,\ / y 4 ’ ”d

* SEM photos of endspoiling
from first use of fixture
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* Penetration of electrode into
capillary pores is ~30um
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MCP Development: Testing at SSL

~ 1 Arradiance ALD/Incom MCP Pair Test
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MCP Development: Testing at ANL

Gain Comparison of ALD based and Commercial MCPs
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Photocathodes
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Photocathodes: Three thrusts

Argonne, Space Sciences Lab, UC-Berkeley, Washington Univ.,

St. Louis, Univ. of Illinois, Chicago

+ SSL: R&D focus on scaling up of traditional
bi-alkalai to large area

* Proven history with planacon

» ANL/WashU/UICU: R&D focus on theory

inspired design
* New novel photocathode technologies like nano- /

» Nano-structured photocathodes:
- Reduction of reflection losses

structured photocathodes

» ITT-V have the potential for high QE, shifting
toward the blue and robustness (ie. they age well,
high temp)

- Simulations, testing & characterization

» ANL: R&D focus on design for industrial
production of large area photocathodes for a
tile factory

* what does this mean for industry
o

(light trap)

 Heterogeneous structure permits

multi-functionality (electrically,
optically, electron-emission, “ion-
etching resistant”)

- Increased band-gap engineering

capabilities

U.S. DEPARTMENT OF
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Photocathode Deposition Development

Work performed by Space Sciences Lab, UC-Berkeley

Evaporation tooling
for 8.7" windows

Small tank for 1.22” test run samples
Test runs with Fused Silica, Borofloat glass
ITO & MgO coated ALD layers on glass; scrubbing

= v
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Anode and Signal Development

\
.
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Anode and Signal Readout

Univ. of Chicago, Univ. of Hawaii

* Resolution depends on & photoelectrons, 25
analog bandwidth, and signal-to-noise.

Simulations showed “pulse sampling”
to give the best results

* Transmission Line: :
readout both ends — get position and time il
- Cover large areas with much reduced :

channel count.

- Simulations indicate that these
transmission lines could be scalable to
large detectors without severe degradation
of resolution.

Differential time resolution between

two ends of a strip line

20r

Sampling rata: 40 GSs

Leading edge
Multiple threshold
Constant fraction
FPulse sampling

—————

521 [dB

1 1 L 1
20 40 &0 80 100 120
Mumber of Photaslectrans

e —

"

2.5GHz = 140 ps rise time!’v“. :
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Anode and Signal Readout: ASIC
Sampling Chip

‘New 106s/s high input bandwidth,
130nm CMOS sampling chip is being

developed, "PSEC3"
‘Proposed schematic of custom /
transmission line anode & fast sampling
ASIC

Chip Value
characteristics

Technology IBM CMOS
0.13um

Sampling frequency >10Gs/s

Number of channel 4

Number of sampling 256

cells

Input bandwidth >2GHz
Dead time 2US
Number of bits 8

Power consumption To be measured

Test board for studying PSEC3

a 25
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Mechanical Design Hermetic Packaging
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Mechanical Design: Ceramic
Space Sciences Lab, UC Berkeley

 Use ceramic assemblies, similar to those used
by conventional MCPs.

* Well developed technology, know-how available
at SSL.

\Single step braze
- Stamped OFHC Cu or Kovar indium well
- Kovar intermediary flange

N - Alumina wal SSL Vacuum test chamber
S ——— = - Kovar getter flange . ’y
74///7//?/”//7///’”’/ . HiTemp, CuSl brazed anode system for testing 8” MCPs
/ / %%%777//////// » INnCuSil braze alloy (750°C braze)
—= - /”//// /J/{// | - Avoids remelt of anode CuSil

» Four braze joints in final assembly

SSL Anode
Plates



https://hepblog.uchicago.edu/cdf/cdf2/wp-content/uploads/2011/04/DSC07760.jpg
https://hepblog.uchicago.edu/cdf/cdf2/wp-content/uploads/2011/04/DSC07759.jpg

Mechanical Design: All Glass

Argonne, Univ. of Chicago

Goals:

« Use inexpensive borosilicate glass for containment vessel
* Avoid use of pins penetrating glass for HV and signal

* Cheap, reliable, reproducible containment vessel fab.

« Demonstrate feasibility with partially active mock-up
Constraints:

» Support vessel against implosive atmospheric pressure
 Top photocathode window seal at low temp. (<120 ° C)

« ~10 yr stability for seal with small leak rate

« Min. handling steps in fabrication

« Avoid particulates in vacuum space

« Materials chemicall compatible with alkali metal photocathode

Our first sealed box under pressure.

It is a 8" square sealed box
S 29
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Tile Base Assembly -- Anode Bottom Plate & Sidewall

&0 ump-out is “short-cut” o create N Develop technique to reproducibly
¥ vacuum on test assembly w/o bond sidewall to bottom anode plate
vacuum transfer facility e Center sidewall frame w.r.t. bottom
plate; 2 sides flush, equal overhang
on anode ground strips
e Attach getter holder tubes

Sidewall bonds on
alternating silver strips
¥~ and bare glass gaps.

= Extension of strip past
sidewall for bridging
between tiles & readout
connection.

Original steel fritting fixture
replaced with much simpler all
glass devised by Joe Gregar

7.\ 30
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Construction of first all glass mock tile:

a) 2.97mm bottom Grid Spacer b) add Mock MCP c) add functionalized MCPs d) add 1.1mm Grid spacer

e) Add mock MCPs, 33mm functionalized
MCPs & top 1.1mm Grid spacer

h) Mock tile after sealing & evacuation

f) full stack in mock tile




Simulations and Testing

Microscopic/Materials-Level

/I\/Iaterial Science Division, ANL \

Constructing dedicated setup for low-
energy SEE and PE measurements of ALD
materials/photocathodes.

parts-per-trillion capability for characterizing

Qnaterial composition. /
\

/ Berkeley SSL

Decades of experience.

Wide array of equipment for testing
Individual and pairs of channel plates.

Infrastructure to produce and characterize
Qvariety of conventional photocathodes. /

Macroscopic/Device-Level

/ HEP Laser Test Stand, ANL \
Fast, low-power laser, with fast scope.

Built to characterize sealed tube detectors,
and front-end electronics.

\I—Iighly Automated

/

I

/ Advanced Photon Source, ANL\

Fast femto-second laser, variety of optical
resources, and fast-electronics expertise.

Study MCP-photocathode-stripline systems
close to device-level. Timing characteristics

\amplification etc. /

32
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Simulations

* Working to develop a first-
principles model to predict MCP
behavior, at device-level, based on

microscopic parameters.
* Will use these models to understand .
and optimize our MCP designs. 3
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Transit Time Spread (TTS)
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Conclusion

Large Area Picosecond Photodetector Development collaboration is on
track to deliver a working prototype by the end of year 3 (summer 2012)

Atomic Layer Deposition coatings of 33mm glass capillary disks are
producing gain >10® for MCP pair; Are in the process of scaling up to
8" ALD

Have developed 3 ALD resistive + 2 ALD emissive chemistries
Mature mechanical designs for hermetically sealed tube

- Proven design in ceramic by SSL
- Well-advanced inexpensive glass design -- first hermetic box completed

Moving to reliable and reproducible fabrication of sealed tubes in quantity
Designing a tile production facility at Argonne

- Lab space for tile facility is being developed

- Layout design of labs for wet chemistry and vacuum handling underway
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Anode and Signal Readout: First Mock Tile
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» Backup




MCP Development: Electrode Evaporation
onto MCPs - Endspoiling

Fermilab and Space Sciences Laboratory, Berkeley, UC

FNAL

* Metallization for electrical
contact applied to bare glass
capillary before ALD

°* Nichrome evaporation
performed at Fermilab Thin
Film Facility and as SSL

°* FNAL Fixture must rotate MCP
about 8° bias of pores

* Penetration of electrode into
pores is 1 diameter, i.e. 20um
(endspoiling)

= 0L 9 >
H L JTH ¥

SSL current Bell jar setup for
fixturing 33mm sample
evaporations and cartoon of
modifications to accommodate
8” tiles

14
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MCP Development: Scale-up of ALD
Processing

Studying ALD on Large

Surface Areas

* 33mm disk surface area
IS 0.13m?

* 8” x 8” surface area is
6.4m?

* 20 MCPs area is 129m?

WY

i Tray top

1‘.'\ i at
19 Y L/

10 trays
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New Photocathode Lab at Argonne w/Burle Equipment

__ New Burle Equip.

» Just sitting up equipment

 First photocathodes w/QE>15%

* Plan to use this eqpt for mock
tile assembly scaleup

Photocathode Lab Plan View

Optics Burle
Station Equipment

Holes for LED light

N
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