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Abstract

Much work has been done by the Large Area Picosecond Photodetector (LAPPD) Group
on research and development of a large area fast photodetector. In this project, I took laser
data at Argonne National Laboratory to test the capabilities of the hardware. This involved
helping realign optics, ensuring the laser intensity is correct, and interpreting signals in both
hardware and software. The data was interpreted using Matlab scripts, in which I calculated
the times of the pulses and the associated uncertainties. The calculation was done using a linear
least-squares method. Data optimizations are considered and both resolution and goodness of
fit are analyzed for the data set.

1 Motivation

With the advent of the LHC era, physicists have a new collection of data to search through for
physics beyond the Standard Model. One interesting search that is ongoing is the possiblity of
detecting new particles due to models which are otherwise unconfirmed. Such particles could include
supersymmetric partners to Standard Model particles, magnetic monopoles, mirror particles, and
others [1]. Such particles would be massive, typically predicted to have masses of order 100GeV/c2

or greater, and limits currently exist on their masses [2].
These new particles could be long-lived due to conservation of some undiscovered quantum num-

ber. An analogy to compare this to would be the long lifetime of the kaon due to the conservation of
strangeness. The new particles, dubbed stable massive particles (SMPs), would behave like heavy
muons if generated in a collider [3].

There are many tests which can be used to search for SMPs, but all are subject to troubles
which make detection of beyond the Standard Model particles challenging. The first of these tech-
niques includes searches for anomalously large dE

dx in charged particle tracks. If the detector is
not designed for a large detection range, SMPs can saturate electronics. Tracks with saturations
can give indications that a massive charged particle is present, but reveal little information about
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the particle itself. These saturated hits could also be confused with overlapping trajectories. Fur-
thermore, measurements of dE

dx are not normally distributed, making it difficult to determine the
average ionization by the charged particle [2].

Another technique that is employed is to look for excesses of particles which have a β small
enough to be stopped by the detector. Assuming SMPs are long-lived would mean that their
lifetimes could easily be greater than the time window in which the search is done, so no decay
products would be seen from a stopped particle. This measurement is limited in its determination
of the mass; at low momentum, the uncertainty in momentum becomes too great. This technique
can only tell that there is a SMP present and does not give information about the particle.

The technique most relevant to this project is that of time-of-flight analysis. In this technique,
the arrival times of particles are compared to the speed of light, and the difference in time is used
to determine the velocity. A separate measurement of momentum allows one to calculate the mass
of the particle. This technique has the difficulty of being hindered by the Lorentz factor; as the
momentum gets larger, an increase in the momentum gives a smaller contribution to the velocity.
After some cutoff momentum, a finite resolution detector will not be able to distinguish between
the velocity of two particles.

The equation for relativistic momentum is

p = γβm (1)

By plugging in for γ and solving for 1
p2 in terms of 1

β2 , we see the linear relationship
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evaluation of the percent error associated with mass measurement is given in [1] as(
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Neglecting the uncertainty in momentum and substituting ∆t
t for ∆β

β , one can calculate the uncer-
tainty in the mass. Using the quoted time resolution for the ATLAS experiment of 1 nanosecond,
a travel distance of 3 meters, and a β of 0.8 yields a 23% uncertainty in the mass, a number
comparable to the uncertainty that could be obtained via dE

dx measurements [1].
With the development of faster detectors, masses can be distinguished up to velocities closer to

the speed of light. The large area picosecond photodetector (LAPPD) collaboration has developed
technology capable of resolving times on the order of ten picoseconds, with capabilities of reaching
sub-picosecond resolution within reach. This opens the door to considerably better time-of-flight
resolution, achieving the same 23% uncertainty in mass at β = 0.9998. With this technology, time-
of-flight measurements can be reasonably performed on particles of mass 100GeV/c2 or greater for
any kinematically allowed momentum capable of being produced at the LHC.

The goal of this project is to convince the reader that hardware capable of picosecond resolution
is a reality and to demonstrate that hardware in development is within striking range of this goal.
To do so, we subjected the hardware to UV laser pulses at Argonne National Laboratory. Seven
runs of 2000 events on two channels worth of data were taken, with the laser pulsing position
spaced 3mm apart in successive runs. The data was collected on an 8-inch MCP plate and read
using a waveform-sampling ASIC (application-specific integrated circuit) called the PSEC4. Data

2



was output through USB to a computer and analyzed using Matlab scripts I wrote. From the data,
times and the associated uncertainties were collected, as well as the reduced χ2 goodness-of-fit. A
select few data points were checked by hand and different optimization algorithms were considered
for finding the most appropriate extraction of timing information from the pulse rising edge.

Section 2 of this paper describes both the data acquisition process and the data flow through
the hardware chain in the output process. A brief overview of some of the physics involved with
the detection process is given. In section 3, a description of the hardware is given. This includes
both the laser test bench at Argonne and the LAPPD collaboration hardware. Section 4 discusses
the techniques involved with extracting timing information via a process named constant fraction
discrimination (CFD) and the associated error analysis. This section also shows the data obtained
and interprets the results. Finally, section 5 gives a summary of the results and mentions the
capabilities possible from hardware developed by the LAPPD collaboration in the near future.

2 Data Taking

The hardware capable of picosecond resolution makes use of anode striplines to transport infor-
mation. The striplines carry information about photons incident on the board to analog to digital
converting chips, which relay the information to a computer through a series of electronics.

The photodetector operates much like a photomultiplier tube. A photon is absorbed in a photo-
cathode, causing emission of an electron. This electron enters a micro-channel plate, or MCP, stack,
which is a resistive substrate with micron-sized pores. There is a high potential difference across

Figure 1: A diagram of the process involved in detecting a photon. The photon (yellow) hits
the photocathode, emitting an electron through photoelectric processes. The electron enters the
MCP stack, where a high voltage is applied and successive collisions with the walls cause secondary
emission. The electrons exit the MCP stack and are collected on the anode striplines, where they
are transported as an electrical signal to the readout.
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the stack which accelerates the electron enough to induce secondary emission from collisions with
the MCP stack. A series of secondary emissions from the electrons create an avalanche of electrons
which are collected on anode striplines. To promote these collisions, the MCP pore channels are
slightly angled compared to the direction of the applied field, forcing the electrons to hit the MCP
instead of traveling straight through.

The use of MCPs as opposed to conventional PMTs increases the spatial, and hence the tempo-
ral, resolution significantly. Spatial resolution is governed by the characteristic size of the detector;
one can only know that a particle hit the detector, not the location that the detector was hit. For a
PMT, the size of the scintillator is about an inch, limiting the time resolution to within 100 picosec-
onds. An MCP decreases the characteristic size to the order of a few microns, the size of a pore
in the MCP stack. This sets the achievable resolution at 1 picosecond, a two order of magnitude
increase in resolution.

To test the MCP capabilities, the photodetector is pulsed with UV light from a laser. With
the help of Matt Wetstein and Andrey Elagin, we were able to obtain pulser data from the laser
testbench at Argonne National Lab. To do so requires realigning the optics if they need to be
realigned. This involves tracing the UV light through the optics using a detector card and ensuring
that each part of the optical path is seeing the correct light wavelengths make it through the optics
unhindered.

Next, we ensure that the laser intensity is high enough to make the journey through the optics,
but low enough such that only one photon is hitting the MCP tile per pulse. We do this by hooking
up the output of the channels to an oscilloscope and looking at the waveform. When too much
light is incident on the MCP, the pulses are large in amplitude and not indicative of a single-photon
detector, which is what we would like to test. To little light will reduce the amount of pulses seen
in a data set, which is wasteful of data storage.

Following the intensity testing, we connect the waveform digitizing chip and perform a pedestal,
which is handled by a script on the computer. The testbench is then ready to collect data. We
took several runs of data at different positions on the chip by controlling a translational stage from
the computer.

To trigger the electronics, part of the laser light is sent to a photodiode. If the trigger channel
is saved, the time of arrival of the pulse on the detector can be inferred and compared to the times
that the detector reads a pulse signal. The point of incidence of the laser on the photocathode is
set by a mirror on a translational stage controlled by a computer.

The MCP data collection implements a hardware trigger. When a laser pulse is sent through
the optics, a portion of the light which would otherwise be unused is extracted and collected in a
photodiode. The pulse from this photodiode is added to information about the pulse intensity from
another diode and read in through an evaluation board. The evaluation board houses the digitizing
electronics and is read out through USB to a computer.

The MCP pulse data is digitized by an ASIC (application specific integrated circuit) capable of
high-speed data collection. The ASIC, named the PSEC4, is capable of a 17GHz sampling rate [4].
The PSEC4 has a 256 buffer sampling depth at 12 bit precision and has 1.5GHz bandwidth. It can
digitize up to 6 channels simultaneously. A set of digitized pulses from the PSEC4 can be seen in
figure 2.

Data collected included 2000 events over two channels for each of seven positions, spaced 3mm
apart.
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Figure 2: A sample of the readout coming from both sides of a single anode stripline. The x-axis
is time in seconds (note the factor of 10−8), and the y-axis is voltage in Volts.

3 Hardware Description

The 8”x8” detector panel tiles consist of a photosensitive material laid over two MCPs, aligned to
form a chevron MCP stack. A high voltage is applied to the top of the plate to induce secondary
emission inside the MCPs. Under the MCP stack is a series of anode striplines which conduct the
secondary emission electrons to the readout hardware. Each tile has a set of 30 anode striplines.
The tiles can be arranged into a supermodule, increasing the detector area with only a moderate
increase in hardware and a minimal loss of resolution.

The anode striplines are directed into the front-end readout electronics, housed on the analog
card. The PSEC4 chip reads the signal from the anode striplines and digitizes it, creating a
waveform. A single PSEC4 chip can handle 6 anode striplines, with five PSEC4 chips per analog
card. For this project, the output digitized waveforms are sent to an evaluation board, which does
a conversion from the raw readout to a voltage and buffers the data for output through USB.

Instead of being sent to the computer through the evaluation board, the data can optionally be
sent through a series of FPGAs (field programmable gate arrays) which perform analyses on the
waveforms. The use of FPGAs has two purposes: data sparsification and reduced analysis time. By
running the analysis as the data is sent through the output chain, unnecessary information can be
stripped out, leaving only the relevant information behind and thus reducing both the bandwidth
and the memory needed to store and transport the information. Furthermore, FPGAs are efficient
in that they can process information in parallel, allowing them to perform a series of simple processes
considerably faster than a computer.

Two tiers of FPGAs would be used in the front-end data processing. The first is contained on
what is called the digital card. This FPGA would perform analyses on only one side of the anode
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stripline readouts in what is called first localization. The first localization is the process of collecting
information on the integrated charge, the transverse position (to zeroth order, which stripline the
pulse hits) and the relative time that the signal pulse reaches the detector. The output data is sent
to the central card through 8 LVDS lines. This project is designed to mimic the timing analysis
performed by this FPGA.

The second tier FPGA is housed on what is called the central card. Second localization takes
place here, where information from the digital card FPGAs on both sides of the anode striplines are
combined and processed as a group. The second localization involves converting the relative time
information into absolute time information (the time the pulse hits the photodetector plate) as well

(a) A picture of a single detector tile and an accompanying di-
agram. The tile has spacers which act to apply the voltage to
the MCP stack. The tile is covered by a glass window and the
anode striplines lie under the bottom MCP. Photo credit to Rich
Northrop.

(b) A picture of some detector tiles arranged into a
supermodule. In this case, the supermodule will be
comprised of a 3 by 4 arrangement of tiles, with 15
PSEC4 chips on each side of the supermodule. A
ruler is shown to the right of the supermodule for
scale. Photo credit Rich Northrop

(c) A picture of the supermodule backside. The su-
permodule has six digital cards, arranged on the sides
of the detector, and a single central card in the mid-
dle. Photo credit Rich Northrop.

(d) A picture of the vacuum chamber housing the 8 inch MCP
tile and part of the laser test bench. The optics for the laser
are contained within the black box in the lower right corner of
the picture. A power meter can be seen in the foreground on
the left. Not pictured is the laser, covering most of the bench
beneath the electronics.
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Figure 3: Diagram of the laser testbench setup. The laser test bench has a series of optics to
isolate a beam of UV light for pulsing the MCP. The titanium-sapphire laser light is sent through
two frequency doubling BBO crystals to generate UV light. The UV beam passes through a blue
mirror, and the blue light is used to trigger the readout electronics. The light is further refined
with a set of prisms and an iris, then collimated using a telescope. A 50/50 splitter sends part of
the beam to a photodiode for a power measurement, and the rest is sent to the MCP in the vacuum
chamber. A photodiode is used to trigger the electronics such that they capture the pulses.

as finding the position along the stripline based on the arrival time of the pulses in the readouts
on either side. The data would be collected and sent to the computer from the central card either
through USB or through ethernet.

For testing, the laser testbench at Argonne National Laboratory was used. A titanium-sapphire
laser beam is frequency doubled and sent through a series of optics to isolate a beam of UV light. A
portion of the unused beam is read with a photodiode and used as a trigger for the electronics. The
beam is then focused with a telescope and measured for intensity as it enters the vacuum chamber
which houses the detector tile.

4 Analysis

Several factors play into what determines the best resolution possible for a given detector system.
As stated in [5], the time resolution depends on the signal to noise ratio, analog bandwidth, sampling
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Figure 4: Simulation results of the number of photoelectrons versus time resolution for various
fitting algorithms. The algorithms used are single threshold, multiple threshold, constant fraction
discrimination, and a spline fit over the waveform. Single threshold takes only the time that the
threshold is crossed. Multiple threshold does a fit over the times when the voltage crosses several
threshold values and extrapolates a time from the fit. Only the constant fraction discrimination is
used in this project. [7]

frequency, and signal statistics. The signal to noise ratio, analog bandwidth, and sampling frequency
are controlled by the properties and quality of the detector. The signal statistics can be pushed
slightly depending on how many data are available to extract information from. We can achieve
high resolution by finding a good fit for the shape of our waveform and determining the relevant
properties from our fit.

4.1 Constant Fraction Discrimination

More than one algorithm exists to calculate the time of the pulse. These algorithms make use of the
long rise time of the rising edge of the pulse. A linear fit over the rising edge is sufficient to extract
the timing information necessary for analysis. However, the exact approach to use in creating this
fit is ambiguous. Simulations show that not all algorithms are created equal, as in figure 4.

One algorithm that is shown to be robust is the constant fraction discrimination (CFD) method.
This algorithm compares the waveform to the maximum amplitude of the pulse and finds the time
when the pulse rising edge reaches a constant fraction of the maximum height. Unlike threshold-
crossing timing, constant fraction discrimination has the advantage of being mostly independent of
pulse amplitude and threshold voltage. Pulses with shapes that are scaled only in amplitude will
result in the same times when CFD is implemented.

Applying CFD to a real pulse waveform requires interpolation between data points. This is
accomplished by a least-squares linear fit over points in the rising edge of the pulse. The linear

8



Figure 5: A demonstration of the advantage of the constant fraction discrimination method versus
leading edge threshold timing. The time and error in leading edge discrimination varies with pulse
amplitude, but not for CFD. [8]

least-squares equations are given as follows:

m =
N
∑
i ti −
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and the associated uncertainties are

(∆m)
2

=
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V

σ2
tN

(6)

(∆b)
2

=
σ2
V

N
(7)

Where m is the slope and b is the intercept [6].
From here, we can invert the linear equation to find the required time for our analysis:

tCFD =
V − b
m

(8)

The uncertainty in time is calculated using standard error propagation, which reduces to:

(∆tCFD)
2

=
1

m2

(
(∆V )2 + (m∆t)2 + (∆b)2 + (tCFD∆m)2

)
(9)

where the normal error in voltage (∆V )2 is replaced by (∆V )2 + (m∆t)2 to account for the uncer-
tainty in time of the data. The values used were σt = ∆t = 10ps and σV = ∆V = 0.0072V .
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Figure 6: A sample linear fit over a pulse. The shape of the pulse is outlined in blue. Two different
optimizations were used, as is described in Section 4.2. A fit over the weighting function (N=5)
described in Equation 11 is shown in green, while the optimization over uncertainty only (N=10)
is shown in red. For both of these optimizations, the data points on the pulse that were used in
each of the linear fits are also shown. Although the optimization in uncertainty claims to have a
better resolution than the weighting function (21ps versus 31ps), edge effects of the pulse in the
linear fit have a considerable impact on the goodness of fit. The reduced χ2 for the weighting and
uncertainty optimizations are 1.12 and 41.5 respectively. Note that all of the data points used in
the weighting optimization are also used in the uncertainty optimization.

To get the goodness of fit, the reduced χ2 value was calculated as well. This is simply χ2 divided
by the number of degrees of freedom, or

χ2
red =

χ2

ν
=

1

N − 2

∑
i

V (ti)− Vi
σV

(10)

where N is the number of data points used in the least-squares fit. A sample linear fit can be seen
in figure 6.

4.2 Assumptions and Approach

In analyzing the pulse waveforms, some simplifying assumptions were made:

• No relative timing information was available. This includes the trigger and the wrap-around
point of the data. All data was assumed to be contiguous and in chronological order. Without
this data, the absolute arrival time of the pulse cannot be measured, only the relative time.
For the extent of this project, the absolute time is unnecessary.
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• Pedestal values were not calculated. The pedestal was assumed to be consistent over the entire
channel and to have a value equal to the median of all of the buffer values on the channel for
that event.

• Uncertainty in voltage was unknown for these runs. However, recent work has shown that
the uncertainty is around 0.1% of the peak maximum. The uncertainty for this analysis was
found by taking the RMS voltage over an unused output channel for all of the events. This
uncertainty was found to be 7.2mV, or approximately 2% of the peak maximum. The increase
in the uncertainty can be explained by electromagnetic interference from correlation between
channels. This uncertainty is still used in the analysis as a ”worst case” scenario.

• The time between consecutive buffers is assumed to be 100 picoseconds ±10%, consistent with
the hardware sampling rate for the data runs. Again, this is a ”worst case” assumption; the
hardware is capable of reaching times of 60ps ±10%.

• The original data was found to have severe problems with noise, due to electronics interfering
with each other and possibly a ground loop issue. This data was thrown away in favor of
data taken by Eric Oberla, a month prior. Analysis was done on this older data, which was
obtained using the same methods mentioned in section 2.

The times and uncertainty in times were calculated for all events on all channels using Matlab
scripts implementing the constant fraction discrimination method. To ensure the best fit possible
in the linear least squares, combinations of consecutive data points for each waveform were tried
and tested for both their uncertainty and reduced χ2. The number of data points used in the linear
fit was allowed to range from 4 to 10. Cuts were made to ensure that the slope of the calculated
linear fit was negative and that the median of the data points used in the fit were above threshold,
thereby ensuring that the linear fit was run over the rising edge of the pulse.

The resulting uncertainties and χ2
red were tested using an arbitary weighting function for the

”optimal” fit. The weighting function was invented by hand-picking the ”best” choices from a select
set of events. For most of the analyses, the weighting function

W = −sign(m)
N − 3(

χ2
red + 1

χ2
red

)2 (11)

was used, where m is the slope of the fit and N is the number of points used in the fit. This
weighting function favors those with χ2

red ≈ 1 and larger N. For completeness, this optimization
algorithm is compared to an algorithm which favors uncertainty in time only.

A few cuts needed to be made on the data to ensure reasonable results. The first cut was a
standard threshold cut: if peaks from both channels after pedestal subtraction did not have an
amplitude of at least 50mV, the event was thrown out. Another cut was required to remove events
which did not trigger, in which case the voltage was at a constant -1.75V. A cut requiring the
pedestal to have an amplitude below 1V was sufficient to remove these outliers.

4.3 Results

A histogram of the calculated optimum uncertainties in time can be seen in figure 7. This result uses
the weighting function described in equation 11. This shows that the calculated error in uncertainty
peaks somewhere around 55-60 picoseconds.
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Figure 7: Histogram of the observed uncertainty in time. This includes all runs over all events and
both channels, totaling 15972 pulses after pedestal and threshold cuts. No distinctions between
runs were made because position in the lateral direction along an anode stripline would not be
available for the front-end electronics. Bins are in increments of 5 picoseconds with the lowest filled
bin centered around 20ps.

One might ask how these uncertainties compare to what would be obtained if, rather than using
this arbitrary weighting function, the choice with minimum uncertainty is used. As is expected,
the calculated uncertainties in time decrease. With the weighting function, the average uncertainty
(with a cut requiring the uncertainty to be less than 300 picoseconds) was calculated to be 74 pi-
coseconds and the best uncertainty achieved was 21 picoseconds. With an uncertainty optimization,
the average uncertainty reaches 60 picoseconds with a best uncertainty of 12 picoseconds.

When optimizing over uncertainty, the data favor more points in the linear fit. With the
weighting function, the average number of points used in linear fits was 6.56; the average with
uncertainty optimization is 8.92. This increase in data points allows the linear fit to cover the
entire rising edge of the pulse. However, the increase in coverage also adds the fringe effects of the
beginning and peak to the linear fit, as is seen in Figure 6. This increases the reduced χ2, as is
seen in figure 8. When the number of points used in the linear fit is held fixed, optimization over
uncertainty and optimization over the weighting function (at fixed number of points, the weighting
function becomes optimization over χ2

red) become synonymous.

5 Conclusions

Data was collected by firing a beam of UV light at an MCP detector tile. Seven positions relative
to an origin on the stripline and both sides of a single stripline were used in the data collection.
The data was read out through USB from an evaluation card and saved to a computer. A matlab
analysis was run over the events to find the time and uncertainty in time for each pulse.

When the fits are optimized over uncertainty, linear fits generated from more data points are

12



Figure 8: Histogram of the reduced χ2 for both the weighting function optimization (blue) and the
uncertainty optimization (red) over a single data run. Optimization over uncertainty leads to an
observable shift in the average χ2

red, which is due to the fringe effects of the linear fit.

preferred. These fits use the entire rising edge to calculate the time of the pulse, making the linear
fit less susceptible to fluctuations due to noise and decreasing the uncertainty in time. Allowing
more points in the fit is susceptible to fringe effects from the start and peak of the pulse, making
the linear fit a less-preferred method for describing the rising edge.

The mean uncertainty in time over a single run with the arbitrary weighting function given
in equation 11 was calculated to be 74 picoseconds after cutting uncertainties greater than 300
picoseconds. The best uncertainty 21 picoseconds. This is a conservative estimate though, as
these uncertainties were calculated using ”worst-case” scenario values, and on hardware that is not
running at full speed nor optimized for the highest time resolution possible.

With a more realistic uncertainty, a significant improvement in time can be expected. Using the
quoted value of 0.1% of the average peak height as the voltage uncertainty, the mean uncertainty
drops to 17 picoseconds with a best uncertainty of 10 picoseconds. This is still under the restriction
that the hardware is not running at top speed. With optimized hardware and a faster speed, this
estimate can be improved even more.
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