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Abstract

There is a set of problems associated with neutrino physics: mass hierarchy, CP violation, the
Majorana/Dirac nature and leptogenesis. All of these require extremely precise measurements.
We are interested in developing a new type of non-cryogenic tracking detector with high timing
resolution. Understanding the resolution required from the detector is part of the experimental
process. I have made analytical calculations and helped to build a Geant4 framework for
simulations of the experiment to estimate the resolution. The next step was to determine
what resolution one can get experimentally. We created a testing facility at Argonne National
Laboratory (ANL) to determine the time resolution of MCP-based photodetectors used Large-
Area Picosecond Photo-Detectors (LAPPD) technology. I am part of the group taking data at
the facility. I have performed data analysis and compared the data to analytical calculations
and results of simulations. The results show feasibility of creation of 1 × 1 × 4 m detector,
which is able to determine muon sign using 500 gauss magnetic field.
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Chapter 1

Introduction

1.1 Neutrino physics questions: mass hierarchy, CP vio-

lation, the Majorana/Dirac nature and leptogenesis

The value of quark CP violation cannot explain the ratio between matter and antimatter in the
universe. Leptogenesis [1] is the generic term for hypothetical physical processes that produced
an asymmetry between leptons and antileptons in the very early universe, resulting in the
dominance of leptons over antileptons. Studying this process involves neutrino interaction
research.

There are variety of models introducing neutrino mass [2]. For example, the Dirac model
explains neutrino oscillations between the light neutrinos. The Majorana equation requires for
a particle to be its own antiparticle, which also can be valid for neutrinos. Besides, there is a
hypothetical type of neutrino that do not interact via any of the fundamental interactions of
the Standard Model except gravity (sterile neutrinos).

1.2 The Large-Area Picosecond Photo-Detectors (LAPPD)

Project

LAPPD collaboration aims to develop large-area systems to measure the time-of-arrival of
relativistic particles with sub-nanosecond resolution [3]. The ultimate goal is 1 picosecond
resolution. This is a factor 100 better than the present state-of-the-art.

The project involves development in a number of areas. One of them is multi–channel
plate (MCP) photo-detectors. MCP is a set of parallel channels — electron multipliers. MCP
acts similar to a regular photo multiplier, but its dynode structure is continuous. A stack of
two MCP allows electron multiplication factor of about 106 and high time resolution.

Another part of LAPPD project is effective extracting of time from MCP signal. An MCP
testing facility was built in Argonne National Laboratory (ANL). It is shown that time reso-
lution of MCP-based detectors depends on the method of time extraction and the background
to signal ratio. The goal of this work is to reach 10 picosecond timing resolution using stack of
two 8” square MCP.
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1.3 Motivation for designing a new kind of detector

Figure 1.1: A sketch of the detec-
tor for Daniel Boone experiment.
4 m3 water tank is surrounded
by MCP-based photo-detectors.
The detectors represents stacks of
two MCP 8” × 8” size. These
stacks cover whole or partial sur-
face area of the water tank.

To address stated above neutrino physics questions pre-
cise measurements in the neutrino experiments are required.
One of the possibilities to improve the data quality is charge
and momentum definition of the muons created from neu-
trino interactions.

Professor Henry Frisch within LAPPD collaboration sug-
gested an experiment which is going to provide the possibil-
ity to make this type of measurements. The experiment is
called Daniel Boone (in honor of Daniel Boone [4] and the
series of Boone experiments at Fermilab [5]). It represents a
4 m3 water tank (Figure 1.1) surrounded by high resolution
picosecond photo-detectors based on MCP technologies [6].
The detectors register light radiated by muons, which allows
reconstructing a trajectory of a muon in the water.

If the water tank is put into a constant magnetic field,
muons trajectories are curved. Measuring the curvature of
the trajectories gives the muons charge sign and momentum.
This is possible if the resolution of the detectors is enough.
That is why one needs to estimate the necessary resolution
of the detectors and compare it with real resolution.

This work is a part of LAPPD project. My personal
impact in the project is analytical calculations, building
Geant4 simulation framework together with Andrey Elagin,
development of software for data taking and data analy-
sis, participation in testing facility setup, data taking and
data analysis together with Bernhard Adams, Andrey Ela-
gin, Razib Obaid, Matthew Wetstein.

In Chapter 2 we consider muon motion in water to estimate resolution necessary for muon
charge determination. In Chapter 3 the testing facility at ANL is described. In Chapter 4 the
process of measuring signal from MCP detectors is presented. In Chapter 5 of the paper we
provide the latest results of timing resolution measurements.
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Chapter 2

What resolution is needed for sign
determination of neutrino induced
muons?

2.1 Sign determination
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Figure 2.1: The muon trajectory in wa-
ter in the constant magnetic field B =
100 gauss. The initial kinetic energy of the
muon is 1 GeV. The initial direction of mo-
tion is towards the positive x-axis from the
origin. The charge of the muon is positive.
The magnetic field is directed towards the
positive z-axis. The muon energy loss rate
in water is 2 MeV/cm and it does not de-
pend on energy in this energy range.

The standard method to determine the sign of
charge of a particle is to place it into a constant
magnetic field. If a particle of charge q moves in
the constant magnetic field ~B with the velocity ~v,
it experiences force

~F = q
[
~v, ~B

]
. (2.1)

One can see that if the magnetic field and the ve-
locity direction are known, direction of the force
depends on the sign of charge q. Thus, deflection
of the particle’s trajectory from the straight line
in the constant magnetic field determines the sign
of charge of the particle.

2.2 Analytical calculations

Analytical calculations of the muon’s motion in
water are shown in Appendix A. When the muon
loses energy in water with the rate independent
on its energy, equations of motion can be solved
analytically. This solution does not include multi-
ple scattering effect. The trajectory of the positive
charged muon with initial kinetic energy 1 GeV in
the constant magnetic field of 100 gauss is shown
in Figure 2.1. One can see that when the muon
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travels almost 4.5 m in the direction of the initial motion (this is the traveled distance of muon
with energy 1 GeV in water), the deflection from this direction due to the magnetic field is about
5 cm only. The ability to measure this deflection is essential for the muon sign determination.

Figure 2.2: Sagitta def-
inition for a circle tra-
jectory. l is the straight
line, r is the radius, s is
the sagitta.

To describe necessary resolution one needs to introduce term
sagitta (Figure 2.2). If there is a curve trajectory L from point A
to point B then its sagitta s is defined as the maximum distance from
the straight line AB and points of the curve trajectory:

d = max
a∈L

D(a,AB), (2.2)

where D(a,AB) is distance between point a and line AB.
The sagitta dependence on the strength of magnetic field and trav-

eled distance can be calculated analytically. The results of the cal-
culations are shown on Figure 2.3. One can see that for the studied
range of parameters the sagitta depends linearly on the magnetic field
and quadratically on the traveled distance.
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Figure 2.3: Sagitta of the muon trajectory dependence on the magnetic field strength (left plot)
and the traveled distance (right plot). For the left plot the traveled distance is fixed at 2 m.
For the right plot the magnetic field strength is 100 gauss. The plots show that for successful
muon sign reconstruction in the 2 m long detector using the 100 gauss magnetic field one needs
a resolution better than 7 mm.

Initial suggestion for the detector size was 1 × 2 × 2 m. One can see from the Figure 2.3
that if the muon travels 2 m in the detector and the external magnetic field is 100 gauss, the
sagitta is 7 mm. Increasing of the magnetic field and the detector longitudinal size increases
the sagitta which improves resolution. Muon multiple scattering makes resolution worse. That
is why the next step of the experiment analysis is simulation which includes muon multiple
scattering.

5



Figure 2.4: The muons’ tracks in water with multiple scattering without the magnetic field (on
the left plot). Muons start from the point y = 0, z = 5 m. Their velocity directed towards
the positive z-axis. The initial energy is 1 GeV. The final point of the track is where the muon
stops. The muons’ traveled path length (on the right plot). The average traveled path length
is about 4.5 m.

2.3 Simulations

The purpose of the simulations is to see an effect of muon multiple scattering on the trajectories
and to define an optimal size of the detector and necessary for the resolution magnetic field
strength.

The Geant4 simulation framework is created for this purpose. A rectangular water tank
of different sizes can be simulated. The muon multiple scattering effect is added to the muon
motion features. The magnetic field strength can be controlled.

Figure 2.5: Distribution of the trans-
verse coordinate of the muons after
2 m traveled distance in water. Mul-
tiple scattering is applied. The exter-
nal magnetic field is zero. The aver-
age value of the coordinate is zero, the
standard deviation is about 41 mm.

The origin of the coordinate system is located at
the center of the water tank. The coordinate axes are
perpendicular to the walls. The water tank size is Lx×
Ly × Lz, where Li is the length along the i-axis, i =
x, y, z. The muon of energy 1 GeV initially simulated
at the intersection of the tank wall and the negative z-
axis. Its velocity directed towards the positive z-axis.
The magnetic field is applied along the x-axis.

Without multiple scattering muons would move
along the straight line at the zero magnetic field. Dur-
ing the motion they would loose the energy from 1 GeV
to zero. When multiple scattering is taken into account
the trajectories are curved. On the left plot of Fig-
ure 2.4 the muons’ tracks are shown. The water tank
size here chosen large enough for muons not leaving wa-
ter. Distribution of the muon traveled path length in
water is shown on the right plot of Figure 2.4. The
traveled path length is about 4.5 m.

For the design parameters determination two different options of the detector size are con-
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Figure 2.6: The simulation results for the 1× 2× 2 m detector. There are muons tracks in the
detector presented at the top row of the plots in the (y, z) plane. Muons start from the wall of
the detector with the initial energy 1 GeV and the velocity directed towards the positive z-axis.
The initial transverse coordinates of the muons are x = 0 and y = 0. The magnetic field is
applied along the x-axis in its positive direction. That is why tracks are deflected in the y-axis
direction. At the bottom row of the plots distributions of the y coordinate of the muons at the
exit from the detector (final deviation) is shown. The magnetic field strength is 100, 200, 500
and 1000 gauss for the first, second, third and forth columns of the plot correspondingly. The
positive muons are shown in red. The negative muons are shown in blue.

sidered: the initial suggestion 1 × 2 × 2 m and the extended length option 1 × 1 × 4 m. The
latter option has increased length. Thus the muon can travel longer distance in water what
increases the sagitta and has a positive impact on the sign determination.

The results of the simulations for the first and the second options are shown in Figures 2.6
and 2.7 correspondingly. On the top row of the plots there are muons’ tracks. The tracks from
the positive charged muons are shown in red. The tracks from the negative charged muons
are shown in blue. Different values of the magnetic field applied to the water tank are 100,
200, 500 and 1000 gauss — first, second, third and fourth columns respectively. One can see
that the significant separation of muons and antimuons for 2 m long detector is achieved at the
1 kgauss magnetic field. For the 4 m long detector the significant separation is observed at the

Figure 2.7: The simulation results for the 1× 1× 4 m detector. See description in Figure 2.6
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500 gauss magnetic field.
It is necessary to describe this separation numerically. The initial velocity of the muon is

parallel to the z-axis. The magnetic field is parallel to the x-axis. It means that we expect
deviation of the muon trajectory in the y direction. (That is the reason why we plot the muons’
tracks in the (y, z) plane.) If there is no magnetic field and multiple scattering, the muon’s y
coordinate at the exit of the water tank is zero. When there is multiple scattering, but there
is no magnetic field, the expected value of the y coordinate at the exit is zero (see Figure 2.5).

When the magnetic field is on and ~B is directed towards the positive x-axis, according to
Equation (2.1) the positive muons tend to deflect in the positive y-axis direction, the negative
muons tend to deflect in the negative y-axis direction. One can use the coordinate y at the exit
of the water tank — the final deviation — to describe the muon sign separation.

On the bottom rows in Figures 2.6 and 2.7 there are plots of the final deviation distribu-
tions for each case of the magnetic field strength and the detector length. Each plot has two
distributions. The positive muon distribution is in red, the negative muon distribution is in
blue. The greater magnetic field, the bigger separation between the peaks. Moreover, one can
notice that separation for the 4 m long detector is bigger than for the 2 m long detector, but
the peaks in the 1× 2× 2 m case are sharper.

Table 2.1: Separation of muons and antimuons. Different cases of the detector length Lz and
magnetic field B are presented. Graphically the results are presented in Figures 2.6 and 2.7.

Case
µ+ µ− Separation

µ,
mm

σ,
mm

µ,
mm

σ,
mm

∆µ,
mm

∆µ/σ̄

2 m, 100 gauss 6.0 40.75 -6.2 41.85 12.2 0.30
2 m, 200 gauss 12.0 41.72 -11.8 40.68 23.9 0.58
2 m, 500 gauss 30.3 42.17 -31.0 42.02 61.4 1.49
2 m, 1000 gauss 61.3 41.19 -61.3 39.99 122.6 3.00

4 m, 100 gauss 30.4 144.8 -27.7 141.9 58.2 0.39
4 m, 200 gauss 61.7 143.6 -57.0 143.9 118.7 0.80
4 m, 500 gauss 150.0 140.3 -148.8 139.0 298.8 2.00
4 m, 1000 gauss 280.7 124.6 -278.2 125.0 558.9 3.75

Summary of the simulations results is presented in Table 2.1. Separation of the peaks
growths linearly with the magnetic field. The average RMS width of the peaks in the 2 m long
detector is about 40 mm. The average RMS width of the peaks in the 4 m long detector is
about 140 mm what is 3.5 times bigger. In spite of this, separation of the peaks in terms of
the standard deviation for the 1× 1× 4 m detector is bigger. It reaches 3.75 for the 1 kgauss
magnetic field. For the 1× 2× 2 m detector this ratio is equal to 3 for the 1 kgauss magnetic
field.

Another important characteristic to select the size of the detector is constancy of emitted
photons’ Cherenkov angle. MCP-based detectors cover the water tank and collect Cherenkov
light radiated by muons from neutrino decay. Muon emits cones of light when travels in water.
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The angle of the cones is called Cherenkov angle θ and can be found as

cos θ =
c

nv
, (2.3)

where n is refraction coefficient of water and v is muon speed. If the angle is approximately
constant during the flight, then muon’s trajectory can be reconstructed by collected light. That
is why muon should not loose too much energy in the water tank.

Figure 2.8: Cherenkov angle distribution (on the left) and the average Cherenkov angle (on
the right) of emitted photons dependence on muon’s traveled distance for the detector with
Lz = 4 m and magnetic field 1 kgauss. Cherenkov angle drops down significantly after 2.5 m
of distance. This would make muon track reconstruction more complicated.

Cherenkov angle distribution and the average Cherenkov angle dependence on traveled
distance are shown in Figure 2.8. One can see that Cherenkov angle does not change on first
2.5 m of muon’s flight. After that muon’s kinetic energy becomes small enough for speed to be
different from speed of light significantly. This will make track reconstruction more complicated
in 4 m long detector.

Here we consider a muon created on the wall of the detector. In reality neutrinos decay
in the random point inside the detector. That is why traveled distance of the muons in 4 m
long detector is smaller than 4 m in average. This means that muons motion will happen at
constant speed if they are born close enough to the center of the water tank. Besides, even if
the muon travels more than 2.5 m, intensity of Cherenkov radiation reduces after that. That
is why extra length of the detector will not negatively effect the muon tracking.
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Chapter 3

Experimental apparatus

Figure 3.1: 8” vacuum chamber.
Laser beam goes to the cham-
ber through the window on the
right. MCP-based detector setup
inside the chamber as shown in
Figure 3.2.

The experimental apparatus for this work is a testing facility
built in Argonne National Laboratory in terms of LAPPD
project. Ti:Saph laser creates infrared beam. Then using
BBO crystals we can transform it into ultraviolet beam with
wavelength about 800 nm. This beam splits into two parts:
one of them goes directly to the oscilloscope’s trigger chan-
nel, another one goes to the vacuum chamber (Figure 3.1).

The vacuum chamber has a setup inside, which is shown
in Figure 3.2a. UV light goes to the window of the chamber,
reflects from the mirror and incidents a specific point of the
photocathode (PC). PC is the first element of the stack of
MCP (Figure 3.2b). Actual intensity of the laser beam is
very high, but for the particular setup we use filters making
the system works in single photon regime. When a photon
acts on PC, it emits an electron from the other side. Under
PC there is a stack of two MCP and an anode (Figure 3.2c).
PC, top and bottom of both MCP and the anode are con-
nected to high-voltage source. The electron emitted from
PC is accelerated by the potential difference between PC
and top of first MCP. Interacting with MCP the electron
causes secondary emission elections. They are accelerated
by the potential differences. Thus, multiple amplification of
the signal occurs, and the avalanche of the electrons hits the
anode.

The anode represents an array of parallel strips (Figure 3.2c). When an electron hits a strip,
it creates a signal which spreads to both ends of the strip. Measuring the signal arrival time
on both ends of the strip one can determine the position of the hit along the strips. When the
avalanche of the electrons hits the anode, it can hit one or more strips (depending on transverse
size of the avalanche). Besides, cross-talk signals occur on the neighboring strips. Measuring
the amplitude of the signal on each strip one can determine the position of the hit perpendicular
to the strips.

In this work we are concentrated on resolution along the strips. Using the optics we cre-
ate a hit at the specific point of the anode such that only a few strips collect the signal.
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(a) MCP-based detector setup
inside the vacuum chamber.
The mirror directs the laser
beam to the photocath-
ode (PC). PC, two MCP and
the anode are connected to
the high-voltage source. The
anode strips are connected to
the oscilloscope.

(b) MCP stack setup. UV light in-
cidents PC, which emits electrons.
The electrons form the avalanche
in MCP due to secondary emission
electrons. The avalanche hits the
anode and create a signal.

(c) Anode. It consists on par-
allel strips, which collect the
signal. When an electron hits
a strip, the signal forms and
spreads towards two ends of
the strip. The ends of the strip
are connected with the oscillo-
scope, which receives the sig-
nals.

Figure 3.2: Setup of the testing MCP-based detector in the vacuum chamber.

Figure 3.3: An example of the oscilloscope read-
ing. There is a trigger channel in purple. Chan-
nels which collect signal from the opposite ends
of an anode’s strip are shown in yellow and blue.
There is a hit on the strip, that is why both
ends have clear peaks. The peaks are separated
in time. This time difference can be converted
to the position of the hit along the strip.

These strips are connected to the oscilloscope,
which already has a trigger signal. Thus, the
oscilloscope has a signal from trigger and sig-
nals from the anode. There is an example in
Figure 3.3 of the pulses measured by the oscil-
loscope. Trigger channel is shown in purple,
signals from the opposite ends of one strip are
shown in yellow and blue. One can see that
signals from different ends of the strip arrive
in different time. This time difference pro-
vides us with information about position of
the hit along the strip.

The goal of the experiment is to extract
time from the pulses precisely enough to have
time difference resolution better than 10 ps.
This is done by reducing electronics noise, in-
creasing the amplitude of the signal and im-
proving algorithms of time extraction from
the pulse.
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Chapter 4

Data taking

4.1 Data acquisition

In the experiment data is collected by the oscilloscope. The oscilloscope has four channels and
its sampling rate is 10 Gs/s. This means that time resolution of the oscilloscope is 100 ps.

One of the channel is used for triggering. As it is described in Chapter 3, the trigger sends
a signal to oscilloscope before the signal on MCP is formed. This tells oscilloscope to start
reading the data from other channels and save them during the following 1 ms. This set of
data is called a frame.

The other two channels are connected to the opposite ends of the anode’s strip. This strip
is selected to be the one which collects all the signal from MCP. Let us call this strip an active
strip. These two channels define the resolution of the detector.

The last channel connected to one and of the neighboring strip. This will be useful for
cross-talk analysis.

The oscilloscope is operated by a computer script. The script sets parameters of the detector,
tells the oscilloscope to read a number of frames (usually 5000 or 10000) and save this data on
the oscilloscope’s hard drive. The data is saved in RAW format.

4.2 Parameter monitoring

The script sets voltages on PC, top and bottom of both MCP, and the anode. It makes a scan
on the voltages and saves the data in different directories.

Why do we need the parameter monitoring? Potential difference between PC and the top
of first MCP determines the energy which emitted electron has hitting the MCP. Amount
of secondary emitted electrons depends on this energy. The voltages across MCP define the
acceleration of the secondary emitted electrons. The angle of the cone which electrons go from
the first to the second MCP depends on the potential difference between the MCP. This defines
how many pores electrons go in the second MCP. To make resolution better one wants all the
electrons go to as few pores as possible. The electron avalanche size on the anode depends on
the voltage between the bottom of the second MCP and the anode.

All these factors affect the resolution. We change them in specific ranges defined by the
properties of MCP to find the best option for the resolution.
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Chapter 5

Resolution of LAPPD detectors

5.1 Quality cuts

The oscilloscope saves the data in RAW format. The data contains frames from trigger, two
ends of the anode’s strip and one end of the neighboring strip. There is a MATLAB script
which converts RAW format data to MAT format. This data is analyzed by script ”analysis”.

The first step of the script is application of quality cuts. We have to check that both ends
of the active strip have a significant pulse. Besides, trigger channel needs to have significant
amplitude to make sure that the oscilloscope is triggered correctly. The script defines the offset
of each channel of the oscilloscope. Then it defines amplitude of the signal and selects the
events which satisfy the required quality cuts.

5.2 Extracting the time from the waveform

Another function of the script is extracting pulses from the frame. If there are more than one
pulse on the active strip, the event is rejected. There is exactly one pulse per channel from
the active strip in the selected events. At this point the script extracts time from these pulses
using different techniques.

The simplest method to extract the time is absolute threshold. There is a preset threshold
and the time when the signal crosses this threshold called time of the pulse. This method is
simple, but it has a disadvantage: timing depends on the amplitude of the signal. That is why
script ”analysis” does not use this method.

5.2.1 Constant fraction discriminator (CFD)

The script extracts time using improved method — constant fraction discriminator (CFD).
CFD does not have a preset threshold, but it has a preset fraction. Threshold is defined as this
fraction of the amplitude of the signal. The script builds spline of the pulse with 1 ps step.
The first point of the spline above the threshold defines timing of the pulse. This approach
determines time which does not depend on the amplitude of the signal. We chose the fraction
to be 50%.
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5.2.2 Fitted CFD

There is the following improvement of CFD implemented to the script. The improvement is
called fitted CFD. It allows to improve timing due to smoothing of background noise effects.
The difference of this method from the regular CFD is that threshold and timing are defined
from the fit of the rising edge of a pulse but not the pulse itself. We applied the Gaussian fit
to the rising edge of the pulse.

5.2.3 Measurements

Figure 5.1: Pulses time difference on
opposite ends of the active strip de-
pendence on the laser beam position.

A number of MCP was used in the measurements. For
each pair of MCP we did the voltage scan and then
defined the optimal parameters for better resolution.
Then we did a position scan, when we changed a posi-
tion of the laser spot at PC, thus changing a position of
the hit along the strip. For each position we extracted
time of pulses on each end of the active strip for each
frame. Then we calculated the difference of these times
∆T . Finally for each position we calculated the average
value of ∆T .

The average ∆T dependence on X — position of
the laser beam spot for one of the MCP pairs is shown
in Figure 5.1. As expected ∆T depends linearly on X.
The slope of the graph is 10 ps/mm, which corresponds
to speed of signal propagation through the anode strip
line 2/3 of the speed of light. This measurement con-
firms that measured timing has physical meaning. The next step is resolution measurements.

5.2.4 Measured resolution

To determine the resolution one needs to consider a fixed position of the laser beam. There
is set of events for this position. Each event gives time difference ∆T . If position of the laser
beam is fixed ∆T should not change, but in reality if we plot a distribution of ∆T over set of
events, we have a Gaussian distribution. RMS of this distribution is defined as resolution.

There are corresponding distributions for one of the measurements in Figure 5.2. Two ap-
proaches of timing measurement are applied: CFD (Figure 5.2a) and fitted CFD (Figure 5.2b).
CFD method provides resolution of 11.9 ps, which is very close to our goal, but fitted CFD
technique gives us resolution of 9.2 ps, which corresponds our initial goal of 10 ps resolution.
The best resolution achieved at this moment is better than 6 ps.

5.3 Analysis of systematic and statistical uncertainties

We did the resolution measurements for number of sets of MCP and different settings of the
laser and noise reduction system. All of them gave us different values of resolution, what was
necessary to explain. It was discovered that time resolution depends on the ratio of back-
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(b) Fitted CFD timing. Resolution is 9.2 ps.

Figure 5.2: Distributions of ∆T — difference between time of the pulses at opposite ends of
the active strip.

ground noise to the pulse amplitude linearly (Figure 5.3). To check this observation we made
a simulation.

Figure 5.3: Resolution dependence on back-
ground noise. Simulation results are shown in
blue. Real data are shown in black. Depen-
dences are linear. Displacement is explained by
the laser beam spot size, which is not included
in the simulation.

The simulation program generates a pulse
with Gaussian rising edge of the amplitude 1.
The width of the signal is the same as the
real one. Then the program generates random
noise with amplitude a and add this noise to
the pulse. Finally, the program extracts tim-
ing from the generated signal. Different val-
ues of a in range [0, 0.1] are considered. The
result of the simulation is shown in Figure 5.3.

Difference between simulation and real
can be explained by the laser beam spot size.
The signal is generated exactly in the same
time in the simulation when in reality there is
finite size beam spot.

The noise suppression activity has al-
ready improved resolution significantly. The
LAPPD group will continue to improve signal
to noise ratio for better resolution results.
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Chapter 6

Conclusions

This work is a basement of new kind of detector. Necessary characteristics of the detector
calculated analytically and using the Geant4 framework developed together with Andrey Elagin.
The detector of size 1× 1× 4 m is shown to be optimal. The longest dimension of the detector
should be oriented along the beam line. External magnetic field of 500 gauss is necessary for
muon sign determination. Space resolution of the order of 7 mm is required.

The biggest part of the work is LAPPD technology development and MCP-based detectors
resolution measurements. I participated in setup of the testing facility at ANL and data taking.
This includes optics setup, detector positioning in the vacuum chamber, high-voltage connec-
tions and connections between anode and the oscilloscope. I developed an interface between
the laboratory computer and the oscilloscope for collecting data automatically and parameter
monitoring. I developed script ”analysis” and simulation program for noise effect analysis. I
participated in data analysis and noise reduction actions. Finally, LAPPD group demonstrated
timing resolution better than 6 ps and noise effect on the resolution. This corresponds to
600 µm spacial resolution.

Obtained results allow to conclude that building of proposed Daniel Boone experiment is
feasible. High resolution MCP-based detectors will be able to resolve muon sign with appro-
priate magnetic field.

The results are presented at Fast-timing meeting at ANL and at LAPPD group meeting.
Development of the MCP-based detectors will be continued in terms of LAPPD program.

I would like to say thank you to Bernhard Adams, Andrey Elagin, Razib Obaid, Matthew
Wetstein for team work and Professor Henry Frisch for the supervision.
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Appendix A

Muon motion in constant magnetic
field in water

A.1 Muon energy loss in water

The muon energy losses in water can be described by the following formula

ε =
dE

dx
= aρ+ bρE,

where ε is the energy loss rate, ρ is the density of water, E is the muon energy, and a and b
are constants. For the range of the muon energy E about or below 1 GeV a ≈ 2 MeV/(g/cm2)
and b ≈ 3 · 10−6 cm2/g. Taking into account that the density of water is ρ = 1 g/cm3 one can
notice that

aρ ≈ 2
MeV

cm
and bρE ≤ 3 · 10−3 MeV

cm
.

This means that aρ� bρE, and the energy loss rate can be expressed as

ε ≈ aρ ≈ 2
MeV

cm
. (A.1)

A.2 Muon 2D motion in constant magnetic field in vac-

uum

Let us consider a muon moving in water in constant magnetic field ~B. At the initial moment of
time the velocity direction of the muon is ~φ ⊥ ~B. Let us introduce a coordinate system (x, y)

such that magnetic field ~B is perpendicular to the plane (xy). In this coordinate system

~φ = (cosφ, sinφ),

where φ is the angle between the vector ~φ and x-axis. Note that |~φ| = 1. The vector

~n = q(− sinφ, cosφ) ⊥ ~φ

is the normal vector. q = ±1 is the muon sign. The anti-radial vector is ~R = R~n, where R is
the radius of the curvature. ψ is a rotation angle. ~φ + d~φ is the muon velocity direction after
rotation on the angle dψ. Angles α, β, and γ are shown in Figure A.1.
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Figure A.1: The muon motion in constant magnetic field ~B perpendicular to the plane of the
motion (xy). The plot is for a negatively charged muon.

From the triangle 4AOB
α =

π

2
− dψ

2
.

Because of ~n ⊥ ~φ

β =
π

2
− α =

dψ

2
.

From ~φ+ d~φ ⊥
−−→
BO

γ = π − π

2
− α =

dψ

2
= β.

Let us decompose the movement
−→
AB ≡ d~x in the basis of the vectors ~φ and ~n:

d~x = d~x~φ + d~x~n. (A.2)

By definition

d~x~a = (~a, d~x)
~a

|~a|
, (A.3)

where (~a, d~x) is dot product of ~a and d~x. Note that

|d~x| = 2R sin
dψ

2
,

|~φ| = 1, and |~n| = 1. That is why1

(~φ, d~x) = |~φ| · |d~x| cos(~̂φ, d~x) = 2R sin
dψ

2
cos β = 2R sin

dψ

2
cos

dψ

2
= R sin dψ, (A.4)

1The symbol (~̂a,~b) denotes the angle between the vectors ~a and ~b.
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(~n, d~x) = |~n| · |d~x| cos(~̂n, d~x) = 2R sin
dψ

2
cosα = 2R sin2 dψ

2
= R(1− cos dψ). (A.5)

From Equations (A.2), (A.3), (A.4), and (A.5) one can conclude that

d~x = (~φ, d~x)~φ+ (~n, d~x)~n = ~φR sin dψ + ~nR(1− cos dψ) = R
[
~φ sin dψ + ~n(1− cos dψ)

]
.

If d~x = (dx, dy) then
dx = R [cosφ sin dψ − q sinφ(1− cos dψ)] , (A.6)

dy = R [sinφ sin dψ + q cosφ(1− cos dψ)] , (A.7)

The vector ~φ + d~φ is the muon velocity direction after the rotation on the angle dψ. This
means that |~φ+ d~φ| = 1. That is why one can write that

~φ+ d~φ = (cos(φ+ dφ), sin(φ+ dφ)). (A.8)

It is clear from the Figure A.1 that

(
̂~φ, ~φ+ d~φ) = β + γ = dψ.

Thus,
|dφ| = dψ. (A.9)

To define the sign of dφ one should use the requirement

(~n, ~φ+ d~φ) > 0,

which means the trajectory is curved towards the vector ~n direction. From Equation (A.8)

~φ+ d~φ = (cosφ cos dφ− sinφ sin dφ, sinφ cos dφ+ cosφ sin dφ).

That is why

(~n, ~φ+ d~φ) = q(− sinφ cosφ cos dφ+ sin2 φ sin dφ+ cosφ sinφ cos dφ+ cos2 φ sin dφ) =
= q sin dψ > 0⇒ qdφ > 0.

This means that
qdφ = dψ. (A.10)

If s is the path length, than ds = Rdψ. Finally, going back to Equations (A.6), (A.7), and
(A.10), one can write a system of equations of motion as the following:

qdφ = dψ,

ds = Rdψ,

dx = R [cosφ sin dψ − q sinφ(1− cos dψ)] ,

dy = R [sinφ sin dψ + q cosφ(1− cos dψ)] .

(A.11)

20



A.3 Muon 2D motion in constant magnetic field in water

A.3.1 Equations of motion

In the considered case muon energy losses rate does not depend on the muon energy (Equa-
tion (A.1)). That is why the muon energy in water changes according to the formula

E(s) = E0 − εs, (A.12)

where E0 is the initial energy. The curvature radius depends on energy as

R(E(s)) =

√
E2(s)−m2

cB
,

where R is the curvature radius in meters, E is the muon energy in MeV, m is the muon mass
in MeV, c is the speed of light, and B is the magnetic field in Tesla.

Based on the equations of motion in vacuum (A.11) one can write the differential equations
of the muon motion in water assuming dψ → 0:

qdφ = dψ, (A.13)

ds = R(E(s))dψ, (A.14)

dx = R(E(s)) cosφdψ, (A.15)

dy = R(E(s)) sinφdψ. (A.16)

First, let us consider Equation (A.13):

qdφ = dψ ⇒
∫ φ

φ0

qdφ =

∫ ψ

0

dψ ⇒ φ = φ0 +
ψ

q
.

We can define the coordinate system such that φ0 = 0, then

ψ(φ) = qφ. (A.17)

Also, note that
dψ = qdφ. (A.18)

Now let us consider Equation (A.14):

ds = R(E(s))dψ =

√
E2(s)−m2

cB
dψ ⇒ cB

ds√
E2(s)−m2

= dψ.

From Equation (A.12) dE = −εds. Thus,

−cB
ε

dE√
E2 −m2

= dψ ⇒
∫ ψ

0

dψ = −cB
ε

∫ E

E0

dE√
E2 −m2

⇒ ψ =
cB

ε
ln |E +

√
E2 −m2|

∣∣∣E0

E
⇒

⇒ ln
E +
√
E2 −m2

E0 +
√
E2

0 −m2
= − εψ

cB
⇒

⇒ E +
√
E2 −m2

E0 +
√
E2

0 −m2
= e−

εψ
cB .
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For convenience let us denote

Ψ =
εψ

cB
. (A.19)

Then
E +
√
E2 −m2

E0 +
√
E2

0 −m2
= e−Ψ.

Let us introduce a variable A0 = E0 +
√
E2

0 −m2. In these terms

E +
√
E2 −m2 = A0e

−Ψ ⇒ E =
A0

2
e−Ψ +

m2

2A0

eΨ =
A0

2

(
e−Ψ + ρ2eΨ

)
,

where
ρ =

m

A0

.

Note that

E2 −m2 =

[
A0

2

(
e−Ψ − ρ2eΨ

)]2

. (A.20)

That is why one can write for the curvature radius the following formula:

R(ψ) =
A0

2cB

[
e−Ψ(ψ) − ρ2eΨ(ψ)

]
.

Using Equations (A.17) and (A.19) one can get

R(φ) =
A0

2cB

(
e−kφ − ρ2ekφ

)
, (A.21)

where
k =

qε

cB
. (A.22)

One can rewrite Equation (A.15) using Equations (A.17), (A.18), and (A.21) as

dx =
qA0

2cB

(
e−kφ − ρ2ekφ

)
cosφdφ⇒

∫ x

x0

dx =
qA0

2cB

∫ φ

0

(
e−kφ − ρ2ekφ

)
cosφdφ.

Again, one can choose the coordinate system such that x0 = 0. Then after the integration

x =
qA0

2cB

(∫ φ

0

e−kφ cosφdφ− ρ2

∫ φ

0

ekφ cosφdφ

)
. (A.23)

One can show that ∫ φ

0

ekφ cosφdφ =
ekφ(sinφ+ k cosφ)− k

1 + k2
.

Thus,

x =
qA0

2cB

[
e−kφ(sinφ− k cosφ) + k

1 + k2
− ρ2 e

kφ(sinφ+ k cosφ)− k
1 + k2

]
;

x = C
[
k(1 + ρ2)− k(e−kφ + ρ2ekφ) cosφ+ (e−kφ − ρ2ekφ) sinφ

]
,
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where

C =
qA0

2cB

1

1 + k2
.

Similar calculations can be done for Equation (A.16).

dy =
qA0

2cB

(
e−kφ − ρ2ekφ

)
sinφdφ⇒ y =

qA0

2cB

(∫ φ

0

e−kφ sinφdφ− ρ2

∫ φ

0

ekφ sinφdφ

)
, (A.24)

where one assumes y0 = 0. One can show that∫ φ

0

ekφ sinφdφ =
1 + ekφ(k sinφ− cosφ)

1 + k2
.

Finally,
y = C

[
(1− ρ2)− (e−kφ − ρ2ekφ) cosφ− k(e−kφ + ρ2ekφ) sinφ

]
.

Taking into account Equation (A.17) and the fact that |q| = 1, one can write the solutions
for (A.15) and (A.16) as

x(ψ) = C
[
k(1 + ρ2)− k(e−qkψ + ρ2eqkψ) cosψ + q(e−qkψ − ρ2eqkψ) sinψ

]
, (A.25)

y(ψ) = C
[
(1− ρ2)− (e−qkψ − ρ2eqkψ) cosψ − qk(e−qkψ + ρ2eqkψ) sinψ

]
.

One can see the graphical representation of the solution in Figure 2.1.

A.3.2 Maximum rotation angle

Let us define the maximum value of the rotation angle ψmax as the angle when kinetic energy
of the muon becomes zero. Thus the condition for the maximum rotation angle is E = m.
According to Equation (A.20) this means that

A0

2

(
e−Ψmax − ρ2eΨmax

)
= 0⇒ e−Ψmax = ρ2eΨmax ⇒ e−2Ψmax = ρ2 ⇒ Ψmax = ln

1

ρ
.

From Equation (A.19)

Ψmax = ln
1

ρ
⇒ εψmax

cB
= ln

1

ρ
⇒ ψmax =

cB

ε
ln

1

ρ
.

Note, that the trajectory in Figure 2.1 is shown for the rotation angle in the range from 0 to
ψmax.

A.3.3 Sagitta position

Sagitta is the maximum deviation of the trajectory from the line connecting the initial and the
final points of the trajectory. Sagitta of the muon trajectory is a parameter which defines the
necessary resolution of the detectors. Let us find a point where this deviation happens. The
vector from the initial point of the trajectory to its final point is

~L = ~x(ψ0) = (x(ψ0), y(ψ0)).
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Remember, that the coordinate system is chosen the way that ~x(0) = ~0. The normal vector to
~L is

~N = (−y(ψ0), x(ψ0)) ⊥ ~L.

The distance between a point of the trajectory ~x(ψ) and the line connecting initial and final
points of the trajectory is

d =
|(~x(ψ), ~N)|
| ~N |

. (A.26)

To find the point with maximum d one needs to solve the equation for ψ̃

d

dψ
(~x(ψ), ~N)

∣∣∣∣
ψ=ψ̃

= 0.

Taking into account that ~x(ψ) = (x(ψ), y(ψ)) one can write

d

dψ
(~x(ψ), ~N)

∣∣∣∣
ψ=ψ̃

= x(ψ0)
dy(ψ̃)

dψ
− dx(ψ̃)

dψ
y(ψ0) = 0.

From Equations (A.23) and (A.24), using Equation (A.18):

dx(ψ̃)

dψ
=

1

q

dx(φ̃)

dφ
=

1

q

d

dφ

[
qA0

2cB

(∫ φ

0

e−kφ cosφdφ− ρ2

∫ φ

0

ekφ cosφdφ

)]∣∣∣∣
φ=φ̃

=

=
A0

2cB

(
e−kφ̃ − ρ2ekφ̃

)
cos φ̃ =

A0

2cB

(
e−qkψ̃ − ρ2eqkψ̃

)
cos ψ̃;

dy(ψ̃)

dψ
=

1

q

dy(φ̃)

dφ
=

1

q

d

dφ

[
qA0

2cB

(∫ φ

0

e−kφ sinφdφ− ρ2

∫ φ

0

ekφ sinφdφ

)]∣∣∣∣
φ=φ̃

=

=
A0

2cB

(
e−kφ̃ − ρ2ekφ̃

)
sin φ̃ =

A0

2cB

(
e−qkψ̃ − ρ2eqkψ̃

)
sin(qφ̃).

That is why

x(ψ0)
(
e−qkψ̃ − ρ2eqkψ̃

)
sin(qφ̃)− y(ψ0)

(
e−qkψ̃ − ρ2eqkψ̃

)
cos ψ̃ = 0⇒

⇒
(
e−qkψ̃ − ρ2eqkψ̃

) [
x(ψ0) sin(qφ̃)− y(ψ0) cos ψ̃

]
= 0⇒[

e−qkψ̃ − ρ2eqkψ̃ = 0,

x(ψ0) sin(qφ̃)− y(ψ0) cos ψ̃ = 0
⇒

 ψ̃ =
1

qk
ln

1

ρ
,

sin(qφ̃)

cos ψ̃
=
y(ψ0)

x(ψ0)
.

Because of |q| = 1 and Equation (A.22)

ψ̃ =
1

qk
ln

1

ρ
=
cB

q2ε
ln

1

ρ
=
cB

ε
ln

1

ρ
= ψmax.

This is a singular point, but not a solution. Due to |q| = 1

sin(qφ̃)

cos ψ̃
=
y(ψ0)

x(ψ0)
⇒ q sin(φ̃)

cos ψ̃
=
y(ψ0)

x(ψ0)
⇒ tan ψ̃ = q

y(ψ0)

x(ψ0)
.
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A.3.4 Rotation angle dependence on traveled distance

Suppose the muon flew a distance x0 in x-direction. One can estimate the rotation angle for
this trajectory based on Equation (A.25):

x0 = x(ψ0) = C
[
k(1 + ρ2)− k(e−qkψ0 + ρ2eqkψ0) cosψ0 + (e−qkψ0 − ρ2eqkψ0) sin(qψ0)

]
.

Let us use the following approximations.

• ρ2 � 1. For the case of the muon energy of 1 GeV ρ ≈ 0.053. The approximate equation
will be

x0 = C
[
k − ke−qkψ∗

0 cosψ∗0 + e−qkψ
∗
0 sin(qψ∗0)

] |q|=1
=⇒ x0

C
− k = e−qkψ

∗
0 (q sinψ∗0 − k cosψ∗0) .

The solution for the case of 1 GeV muon energy, 100 gauss magnetic field and q = 1 is

ψ∗0 = 7.7 · 10−3 rad.

• ψ∗0 � 1⇒ sinψ∗0 � cosψ∗0. Besides |k| � 1. For the considered case |k| ≈ 67. It gives us
an approximation:

x0

C
− k = e−qkψ

∗
0 (q sinψ∗0 − k cosψ∗0) ≈ −ke−qkψ∗

0 cosψ∗0.

• |ψ∗0| � 1⇒ cosψ∗0 ≈ 1. The approximate equation is

x0

C
− k = −ke−qkψ∗

0 ⇒ ψ∗0 = − 1

qk
ln
(

1− x0

Ck

)
(A.27)

is our final estimation.

To check the estimation one can build a function

x∗0(x0) = x(ψ∗0(x0)) = C

{
k(1 + ρ2)− k

(
1− x0

Ck
+ ρ2 1

1− x0
Ck

)
cos

[
1

k
ln
(

1− x0

Ck

)]
+

+

(
1− x0

Ck
− ρ2 1

1− x0
Ck

)
sin
[ q
k

ln
(

1− x0

Ck

)]}
.

(A.28)
One can see (Figure A.2) that this function is almost linear. To examine the estimation more
precisely should study the absolute error f(x0) = x∗0(x0)− x0 and the relative error

δ(x0) =
|f(x0)|
x0

.

It is clear from Figure A.3 that in the range of traveled distance up to 3 m the absolute error of
the estimation is beyond a few centimeters, which delivers (Figure A.4) the relative error less
than 1%. That is why one can use the approximation (A.27) of the rotation angle for traveled
distance x0.
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Figure A.2: The estimation (A.28) of x0 value dependence on x0 for the magnetic field B =
100 gauss.
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Figure A.3: The absolute error of the estimation (A.28) of x0 value dependence on x0 for the
magnetic field B = 100 gauss.

26



0.0 0.5 1.0 1.5 2.0 2.5 3.0
x0  (m)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 e

rr
o
r 
δ 

(%
)

Figure A.4: The relative error of the estimation (A.28) of x0 value dependence on x0 for the
magnetic field B = 100 gauss.

Sagitta value

Based on Equation (A.26) the sagitta value can be defined by the following formula:

d =
|x(ψ0)y(ψ̃)− x(ψ̃)y(ψ0)|√

x2(ψ0) + y2(ψ0)
.

Using the estimation derived above one can find that the sagitta value depends linearly on
the strength of the magnetic field (Figure 2.3) and quadratically on the traveled distance x0

(Figure ??).
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