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ABSTRACT:
A description of a Java program to facilitate data acquisition and 

analysis using a Tektronix TDS3000 series oscilloscope and applied to 
micro-channel photo-multiplier tubes is provided. A pulsed laser is 
aimed at two micro-channel plates in a light-tight box. The signals from 
these plates are fed into the oscilloscope, which displays the pulse 
shapes for each channel. Using an automated Java program, shell 
commands, and a C-program, the data from the oscilloscope is 
obtained, saved, analyzed and displayed to show a description of the 
pulse information. The Java program described here is a framework that 
could be amended to accept many different calculations and display 
options. For a description of the current laser and detector lab 
configuration, please see Eugene Yurtsev’s paper “Effects of 
Transmission Line Readout,” cited below. 

INTRODUCTION:
The laser test beam for the Picosecond Timing Project has been 

utilized for several years with an array of traditional electronics 
hardware such as analog-to-digital converters (ADCs) and time-to-
digital converters (TDCs) for data acquisition and analysis. To aid in this 
analysis and to expand the different types of analyses the lab is 
capable of making, an oscilloscope has been implemented to display 
the pulses from the Micro-Channel Plates (MCPs) as digital signals in 
time. To optimize the information obtained from the data provided by 
the scope, several shell scripts, a C-code, and a Java program have 
been created to obtain the binary data from the waveforms displayed 
on the scope, save and convert it to a comma-separated-value file of 
time vs. voltage, and begin to analyze the waveform for pertinent 
information. 

HIGH LEVEL OVERVIEW
With a signal being fed from the MCPs to the oscilloscope, the java-
based application acquires waveform data from one or more 
oscilloscope channels. The application allows the option of collecting 
data from a series of runs with one varied parameter, and is formatted 
to save the varied parameter in a data file with the rest of the 
waveform calculations. The data from the scope is collected in binary 
form and once it is collected it is converted to a .csv file and stored in a 
name-file hierarchy as follows:

-Main directory (specified by the user at startup)

-Parameter name (specified by user before each run)

-Ch1.isf, Ch1.csv, Ch2.isf, Ch2.csv, Ch3.isf, Ch3.csv, 
Ch4.isf,    Ch4.csv



Once the data has been collected and stored, the Java application then 
analyzes each waveform to extract specific signal features for one or 
more pulses. This data is printed to the screen and stored immediately 
under the main directory as a space-separated .dat file for continued or 
later analysis. After each run, the program displays the selected 
waveforms using gnuplot, and at the end of the program displays a 
summary report of the signal features found by the java program.

METHOD: Data Acquisition
The oscilloscope that is utilized is a Tektronix TDS 3000 series 4-channel 
e-scope, which has a built-in Ethernet connection and assignable IP 
address. With the scope on the same network as the lab, a picture of 
the scope-image may be sent to a computer for viewing over an 
Internet browser. Further, using the “wget” shell command, the binary 
data from the scope image may be obtained in ordered pairs of time vs. 
voltage. A single channel is imported with each instance of “wget,” and 
the channel number, outfile name, and outfile format (mathcad, 
spreadsheet, or internal) may be specified by the user. Since binary 
data is imported faster than mathcad or spreadsheet, a C-program has 
been provided to convert the binary data to a more traditional .csv file 
(provided by Yohie ENDO, obtained at 
http://yoheie.web.infoseek.co.jp/isftoasc/isftoasc.c).  From here the 
waveform data may be graphed and displayed or analyzed by the Java 
program PulseWidth.java. 

METHOD: Pulse Initialization
The Java class PulseWidth.class in the anlPulse/ package (and 

directory) provides a framework for waveform data manipulation for 
standard calculations such as pulse height, area, rise time, fall time, 
pulse width, and relative position in time. The program performs these 
calculations without fitting the data, so the calculations currently 
depend on good signal-to-noise ratio and how clean the signal is. Also, 
while the program can process up to two pulses for channel, the pulses 
must be clearly defined, with the signal falling below the threshold 
between pulses; however it would be possible to add a second 
threshold in code to provide a deliminator for the program to identify to 
separate the pulses. 

Currently the user dictates the number of pulses to expect and 
the directory to which the data files will be saved. The program reads in 
the first 500 ordered pairs of the specified data file provided by the 
scope to be analyzed and averages them together to attain an 
approximation of the average noise. This assumes that a pulse does not 
occur within the first 500 data points. All 10,000 ordered pairs then are 
read in and assessed for the points where the signal reaches a relative 



maximum1. These points are flagged as the maximums of the number 
of pulses specified, and pulse analysis occurs with these points as the 
defining points of the pulses.

METHOD: Pulse Description
PulseWidth.java creates a Pulse Object for each separate pulse in 

the data file. Once the maximum points of the pulse are identified, this 
information is passed to the Pulse class, where it creates a new instance 
of a Pulse. A threshold for the data file is determined from the noise 
average calculation, and the ordered pairs to either side of the 
maximum are compared to that threshold to determine the starting and 
ending points of the pulse. The maximum initially determined by the 
program is also redefined to ignore the average noise, so if the channel 
is offset from the origin the program still delivers a reasonable estimate 
of how much the pulse maximum differs from the channel’s standard 
value. The x-value (relative time) for the starting, ending, and 
maximum of the pulse are stored in the pulse object for future 
reference. Defining the pulses in this manner presents a framework 
from which many different calculations may be made. The rest of the 
PulseWidth class demonstrates some of those calculations and provides 
a structure that allows for easy implementation of other such methods. 

The PulseWidth class currently calculates the time scale of the 
data, start and stop, pulse width, pulse maximum, rise time, fall time, 
and area. Further, a method is provided for determining the derivative; 
however it is not currently implemented. The time scale is calculated by 
the difference between the 100th x-value and the 99th x-value, because 
there was some evidence of inconsistencies in time on either extreme 
of the data-file. Pulse width is simply determined by the difference 
between stop- and start- times. It should be noted that depending on 
the strength and shape of the signal, the threshold that is implemented 
in code as 

 ﾠ

2 * noiseAve  may not be sufficient, which could lead to 
miscalculated start/stop times. Maximum is the relative maximum of 
the data minus the noise average. 

Rise time and fall time implement an algorithm that calculates 
the ten-percent and ninety-percent points of the max and attempts to 
find approximately where in time they occur relative to each other. In 
the event that the ten-percent or ninety-percent mark lies between two 
adjacent data points, the program calculates the slope between them 
and finds the approximate corresponding time value from that using the 
equation 

 ﾠ

y = mx + b. It should be noted that if the pulse is small in 
amplitude, or if there is a relatively significant amount of noise in the 

1. Note: The program currently assumes that the pulses will be negative 
in amplitude, so the relative max of the data is displayed as a relative 
min.



channel, the ten-percent mark may not be accurately calculated in time 
and thus may lead to skewed results. This can also occur if the pulse-
shape is not smooth, because the program may define the ten-percent 
mark at the wrong place in time. 

To calculate the integral, the program uses the 

 ﾠ

x - values for the 
start and stop times, and every time increment in between them is 
multiplied by its corresponding 

 ﾠ

y - value  and summed together. In 

essence, it is the equation 

 ﾠ

x - increment( ) y i( )
i=start

stop

ﾠ , which is a rough 

approximation of the integral. 
Once these things are calculated for each pulse, they are logged 

in a gnuplot-ready file for simplified organization and further display 
and analysis. Gnuplot is a widely available tool for plotting and display 
of comma-separated-data files. All data from a series of runs is 
concatenated to the same .dat file, separated by comments that specify 
from which data file the calculations came. These files are always titled 
“dataCh#.dat,” and stored directly under the main data directory 
specified by the user.  Here the ‘#’ represents the scope channel from 
which the data was collected. Note that the changing variable is always 
saved as a type String in the first column of the log file. 

METHOD: AUTOMATION
In addition to these calculations, the Java program also enables 

automation of data acquisition and analysis. To do this, a main class is 
Scope.java is implemented. The main method of Scope.java initialized a 
class called Test, which in turn initializes the four separate classes of 
the package anlPulse: UI, Bash, PulseWidth, and GnupWrite. UI is simply 
a user-input class that handles I/O between the computer and user for 
argument handling. Bash serves as the intermediary between the Java 
program and the operating system for calling the shell script 
“wave4.sh” and gnuplot. “wave4.sh” (a bash shell script) obtains the 
binary data from the scope and converts it to comma-separated data, 
and the gnuplot call is used to immediately graph acquired data and to 
graph the analyses at the end of a series of runs. Bash.java interacts 
with the operating system through the java Runtime method, to which 
the command-line arguments are passed in order to communicate with 
the system. Note that the “wave4.sh” command is passed in the form 
of an array of strings, while the gnuplot arguments must be passed in 
the form of one single string. The Boolean “con” in the method 
processData(String[], Boolean) dictates which of the cases should be 
selected. The GnupWrite class manually writes out a tailored .dem 
(gnuplot commands) file to the chosen subdirectory to graph the 
waveforms immediately after receiving them to facilitate data 
comprehension. Each imported waveform is displayed twice, once as a 



full trace and once with just a window around the pulses. Once a series 
of runs is completed, a new .dem file is written to the main data-
storage directory that displays the results of the pulseWidth 
calculations. Five graphs are displayed: pulse height as a function of the 
changing variable, pulse height that is normalized to 1 relative to the 
first run, rise time, area, and area normalized to 1 relative to the first 
run. Note that there is an accuracy limit to gnuplot, and so for certain 
attempts to normalize data, gnuplot interprets the math as division by 
zero and will not display the graph. 

After initializing these classes, Scope.java implements the UI class 
to prompt the user for a series of arguments: directory to save data, 
scope channels to import, number of pulses to expect, and the first of 
the changing variables. The Scope class creates the specified main 
directory as well as a subdirectory for the variable. For each pulse 
number to be imported, the save-directory, variable, and pulse number 
are provided as arguments to the Bash class, which calls “wave4.sh” to 
import data from that channel, convert it, and save it to the variable-
specified subdirectory. Scope then calls the class PulseWidth with the 
arguments directory, variable, channels, and number of pulses to 
expect. For each channel, PulseWidth performs its calculations and 
saves them, along with the changing variable, in the top level of the 
directory specified. 

METHOD: DISPLAY
Once all channels for a particular run have been imported and 

calculated, the Scope class calls GnupWrite to write the waveform .dem 
file (saved as  “directory/var/waveFm.dem”) and then again to graph 
that .dem file with gnuplot. This produces a plot of the waveforms as 
they appear on the scope. 

From here the user is prompted to enter another variable, which 
would start the data acquisition and processing over again. If at this 
prompt the user enters ‘q’ instead, the program will call GnupWrite 
again to write and graph a .dem file called “directory/finalPlot.dem,” 
which displays the five results from the PulseWidth calculations. 

FURTHER IMPLEMENTATION
This program provides a solid framework for a more in-depth 

analysis of waveform data. Different fitting methods could be 
implemented, which could enable different calculations and 
interpretations or better approximations thereof. It would also be of use 
to provide an automated run option, where many runs could be made 
with one changing variable to produce a significant amount of data. 
Different options for the data display are also possible, such as 
histograms of a series of runs. This would allow for rms calculations or 



possible Gaussian interpretations. For double pulses, the code could be 
altered to differentiate between overlapping pulses and perform the 
same calculations or to add individual pulses together to ensure correct 
operation of the micro-channel plates.

SAMPLE APPLICATION:
A series of runs were taken using the Tektronix TDS3000 series 

300MHz oscilloscope with the 10µm transmission line (TL) MCP in 
channel “A” and the 10µm non-TL MCP in channel “B.” The laser pulse-
rate is varied from 1000Hz to 1000KHz. Oscilloscope channels are as 
follows: Ch1: A side (TL) top readout; Ch2: A side (TL) bottom readout; 
Ch3: B side (MCP). HVa = 2400 V, HVb = 2230 V with a light level of 
~300 photo-electrons. Figure 1 shows a sample plot of the waveform 
plot displayed after each run with the java application. Displayed are 
the three waveforms for a pulser rate of 1000Hz. Figure 2 shows the 
feature-summary plot displayed at the end of the run. Note that with 
this ability the differences in rate-dependence may be seen 
automatically after taking the series of runs. The purpose of this 
specific study was to determine the rate of deterioration of the pulse as 
a function of rate. As the rate increases, more charge is extracted from 
the anode, and we believe that the effect in signal features is related to 
the size of the resistor change powering the micro-channel plate 
structure. This would imply that the TL has a significantly lower 
resistance in comparison to the non-TL MCP, which would prompt the 
pulse data to fall off faster in relation.  
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Fig.1: Sample of waveform raw data from channels 1, 2, and 3. Pulser 
rate at 1000Hz, light level at ~300phe



Fig 2:  Data calculations from the java program. Note the difference in 
rate dependence between channels 1 and 2, which are the top- and 



bottom- readouts of the TL, respectively, with the rate dependence in 
the non-TL MCP
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