
Development of a Java-Based Application
to Acquire and Analyze Oscilloscope

Waveform Data

Paul Drake

Office of Science, Student Research Participant (SRP)

Argonne National Laboratory

Lemont, Il 60439

6 August 2010

Prepared under the direction of Edward May and Karen Byrum, High
Energy Physics Division, Argonne National Laboratory

ABSTRACT:
A description of a Java program to facilitate data acquisition and

analysis using a Tektronix TDS3000 series oscilloscope and applied to
micro-channel photo-multiplier tubes is provided. A pulsed laser is
aimed at two micro-channel plates in a light-tight box. The signals from
these plates are fed into the oscilloscope, which displays the pulse
shapes for each channel. Using an automated Java program, shell
commands, and a C-program, the data from the oscilloscope is
obtained, saved, analyzed and displayed to show a description of the
pulse information. The Java program described here is a framework that
could be amended to accept many different calculations and display
options. For a description of the current laser and detector lab
configuration, please see Eugene Yurtsev’s paper “Effects of
Transmission Line Readout,” cited below.

INTRODUCTION:
The laser test beam for the Picosecond Timing Project has been

utilized for several years with an array of traditional electronics
hardware such as analog-to-digital converters (ADCs) and time-to-
digital converters (TDCs) for data acquisition and analysis. To aid in this
analysis and to expand the different types of analyses the lab is
capable of making, an oscilloscope has been implemented to display
the pulses from the Micro-Channel Plates (MCPs) as digital signals in
time. To optimize the information obtained from the data provided by
the scope, several shell scripts, a C-code, and a Java program have
been created to obtain the binary data from the waveforms displayed
on the scope, save and convert it to a comma-separated-value file of
time vs. voltage, and begin to analyze the waveform for pertinent
information.

HIGH LEVEL OVERVIEW
With a signal being fed from the MCPs to the oscilloscope, the java-
based application acquires waveform data from one or more
oscilloscope channels. The application allows the option of collecting
data from a series of runs with one varied parameter, and is formatted
to save the varied parameter in a data file with the rest of the
waveform calculations. The data from the scope is collected in binary
form and once it is collected it is converted to a .csv file and stored in a
name-file hierarchy as follows:

-Main directory (specified by the user at startup)

-Parameter name (specified by user before each run)

-Ch1.isf, Ch1.csv, Ch2.isf, Ch2.csv, Ch3.isf, Ch3.csv,
Ch4.isf, Ch4.csv

Once the data has been collected and stored, the Java application then
analyzes each waveform to extract specific signal features for one or
more pulses. This data is printed to the screen and stored immediately
under the main directory as a space-separated .dat file for continued or
later analysis. After each run, the program displays the selected
waveforms using gnuplot, and at the end of the program displays a
summary report of the signal features found by the java program.

METHOD: Data Acquisition
The oscilloscope that is utilized is a Tektronix TDS 3000 series 4-channel
e-scope, which has a built-in Ethernet connection and assignable IP
address. With the scope on the same network as the lab, a picture of
the scope-image may be sent to a computer for viewing over an
Internet browser. Further, using the “wget” shell command, the binary
data from the scope image may be obtained in ordered pairs of time vs.
voltage. A single channel is imported with each instance of “wget,” and
the channel number, outfile name, and outfile format (mathcad,
spreadsheet, or internal) may be specified by the user. Since binary
data is imported faster than mathcad or spreadsheet, a C-program has
been provided to convert the binary data to a more traditional .csv file
(provided by Yohie ENDO, obtained at
http://yoheie.web.infoseek.co.jp/isftoasc/isftoasc.c). From here the
waveform data may be graphed and displayed or analyzed by the Java
program PulseWidth.java.

METHOD: Pulse Initialization
The Java class PulseWidth.class in the anlPulse/ package (and

directory) provides a framework for waveform data manipulation for
standard calculations such as pulse height, area, rise time, fall time,
pulse width, and relative position in time. The program performs these
calculations without fitting the data, so the calculations currently
depend on good signal-to-noise ratio and how clean the signal is. Also,
while the program can process up to two pulses for channel, the pulses
must be clearly defined, with the signal falling below the threshold
between pulses; however it would be possible to add a second
threshold in code to provide a deliminator for the program to identify to
separate the pulses.

Currently the user dictates the number of pulses to expect and
the directory to which the data files will be saved. The program reads in
the first 500 ordered pairs of the specified data file provided by the
scope to be analyzed and averages them together to attain an
approximation of the average noise. This assumes that a pulse does not
occur within the first 500 data points. All 10,000 ordered pairs then are
read in and assessed for the points where the signal reaches a relative

maximum1. These points are flagged as the maximums of the number
of pulses specified, and pulse analysis occurs with these points as the
defining points of the pulses.

METHOD: Pulse Description
PulseWidth.java creates a Pulse Object for each separate pulse in

the data file. Once the maximum points of the pulse are identified, this
information is passed to the Pulse class, where it creates a new instance
of a Pulse. A threshold for the data file is determined from the noise
average calculation, and the ordered pairs to either side of the
maximum are compared to that threshold to determine the starting and
ending points of the pulse. The maximum initially determined by the
program is also redefined to ignore the average noise, so if the channel
is offset from the origin the program still delivers a reasonable estimate
of how much the pulse maximum differs from the channel’s standard
value. The x-value (relative time) for the starting, ending, and
maximum of the pulse are stored in the pulse object for future
reference. Defining the pulses in this manner presents a framework
from which many different calculations may be made. The rest of the
PulseWidth class demonstrates some of those calculations and provides
a structure that allows for easy implementation of other such methods.

The PulseWidth class currently calculates the time scale of the
data, start and stop, pulse width, pulse maximum, rise time, fall time,
and area. Further, a method is provided for determining the derivative;
however it is not currently implemented. The time scale is calculated by
the difference between the 100th x-value and the 99th x-value, because
there was some evidence of inconsistencies in time on either extreme
of the data-file. Pulse width is simply determined by the difference
between stop- and start- times. It should be noted that depending on
the strength and shape of the signal, the threshold that is implemented
in code as

 ﾠ

2 * noiseAve may not be sufficient, which could lead to
miscalculated start/stop times. Maximum is the relative maximum of
the data minus the noise average.

Rise time and fall time implement an algorithm that calculates
the ten-percent and ninety-percent points of the max and attempts to
find approximately where in time they occur relative to each other. In
the event that the ten-percent or ninety-percent mark lies between two
adjacent data points, the program calculates the slope between them
and finds the approximate corresponding time value from that using the
equation

 ﾠ

y = mx + b. It should be noted that if the pulse is small in
amplitude, or if there is a relatively significant amount of noise in the

1. Note: The program currently assumes that the pulses will be negative
in amplitude, so the relative max of the data is displayed as a relative
min.

channel, the ten-percent mark may not be accurately calculated in time
and thus may lead to skewed results. This can also occur if the pulse-
shape is not smooth, because the program may define the ten-percent
mark at the wrong place in time.

To calculate the integral, the program uses the

 ﾠ

x - values for the
start and stop times, and every time increment in between them is
multiplied by its corresponding

 ﾠ

y - value and summed together. In

essence, it is the equation

 ﾠ

x - increment() y i()
i=start

stop

ﾠ , which is a rough

approximation of the integral.
Once these things are calculated for each pulse, they are logged

in a gnuplot-ready file for simplified organization and further display
and analysis. Gnuplot is a widely available tool for plotting and display
of comma-separated-data files. All data from a series of runs is
concatenated to the same .dat file, separated by comments that specify
from which data file the calculations came. These files are always titled
“dataCh#.dat,” and stored directly under the main data directory
specified by the user. Here the ‘#’ represents the scope channel from
which the data was collected. Note that the changing variable is always
saved as a type String in the first column of the log file.

METHOD: AUTOMATION
In addition to these calculations, the Java program also enables

automation of data acquisition and analysis. To do this, a main class is
Scope.java is implemented. The main method of Scope.java initialized a
class called Test, which in turn initializes the four separate classes of
the package anlPulse: UI, Bash, PulseWidth, and GnupWrite. UI is simply
a user-input class that handles I/O between the computer and user for
argument handling. Bash serves as the intermediary between the Java
program and the operating system for calling the shell script
“wave4.sh” and gnuplot. “wave4.sh” (a bash shell script) obtains the
binary data from the scope and converts it to comma-separated data,
and the gnuplot call is used to immediately graph acquired data and to
graph the analyses at the end of a series of runs. Bash.java interacts
with the operating system through the java Runtime method, to which
the command-line arguments are passed in order to communicate with
the system. Note that the “wave4.sh” command is passed in the form
of an array of strings, while the gnuplot arguments must be passed in
the form of one single string. The Boolean “con” in the method
processData(String[], Boolean) dictates which of the cases should be
selected. The GnupWrite class manually writes out a tailored .dem
(gnuplot commands) file to the chosen subdirectory to graph the
waveforms immediately after receiving them to facilitate data
comprehension. Each imported waveform is displayed twice, once as a

full trace and once with just a window around the pulses. Once a series
of runs is completed, a new .dem file is written to the main data-
storage directory that displays the results of the pulseWidth
calculations. Five graphs are displayed: pulse height as a function of the
changing variable, pulse height that is normalized to 1 relative to the
first run, rise time, area, and area normalized to 1 relative to the first
run. Note that there is an accuracy limit to gnuplot, and so for certain
attempts to normalize data, gnuplot interprets the math as division by
zero and will not display the graph.

After initializing these classes, Scope.java implements the UI class
to prompt the user for a series of arguments: directory to save data,
scope channels to import, number of pulses to expect, and the first of
the changing variables. The Scope class creates the specified main
directory as well as a subdirectory for the variable. For each pulse
number to be imported, the save-directory, variable, and pulse number
are provided as arguments to the Bash class, which calls “wave4.sh” to
import data from that channel, convert it, and save it to the variable-
specified subdirectory. Scope then calls the class PulseWidth with the
arguments directory, variable, channels, and number of pulses to
expect. For each channel, PulseWidth performs its calculations and
saves them, along with the changing variable, in the top level of the
directory specified.

METHOD: DISPLAY
Once all channels for a particular run have been imported and

calculated, the Scope class calls GnupWrite to write the waveform .dem
file (saved as “directory/var/waveFm.dem”) and then again to graph
that .dem file with gnuplot. This produces a plot of the waveforms as
they appear on the scope.

From here the user is prompted to enter another variable, which
would start the data acquisition and processing over again. If at this
prompt the user enters ‘q’ instead, the program will call GnupWrite
again to write and graph a .dem file called “directory/finalPlot.dem,”
which displays the five results from the PulseWidth calculations.

FURTHER IMPLEMENTATION
This program provides a solid framework for a more in-depth

analysis of waveform data. Different fitting methods could be
implemented, which could enable different calculations and
interpretations or better approximations thereof. It would also be of use
to provide an automated run option, where many runs could be made
with one changing variable to produce a significant amount of data.
Different options for the data display are also possible, such as
histograms of a series of runs. This would allow for rms calculations or

possible Gaussian interpretations. For double pulses, the code could be
altered to differentiate between overlapping pulses and perform the
same calculations or to add individual pulses together to ensure correct
operation of the micro-channel plates.

SAMPLE APPLICATION:
A series of runs were taken using the Tektronix TDS3000 series

300MHz oscilloscope with the 10µm transmission line (TL) MCP in
channel “A” and the 10µm non-TL MCP in channel “B.” The laser pulse-
rate is varied from 1000Hz to 1000KHz. Oscilloscope channels are as
follows: Ch1: A side (TL) top readout; Ch2: A side (TL) bottom readout;
Ch3: B side (MCP). HVa = 2400 V, HVb = 2230 V with a light level of
~300 photo-electrons. Figure 1 shows a sample plot of the waveform
plot displayed after each run with the java application. Displayed are
the three waveforms for a pulser rate of 1000Hz. Figure 2 shows the
feature-summary plot displayed at the end of the run. Note that with
this ability the differences in rate-dependence may be seen
automatically after taking the series of runs. The purpose of this
specific study was to determine the rate of deterioration of the pulse as
a function of rate. As the rate increases, more charge is extracted from
the anode, and we believe that the effect in signal features is related to
the size of the resistor change powering the micro-channel plate
structure. This would imply that the TL has a significantly lower
resistance in comparison to the non-TL MCP, which would prompt the
pulse data to fall off faster in relation.

ACKNOWLEDGEMENTS:
I would like to thank Ed May and Gary Drake for their direct

assistance with the data calculations. Thank you also to John Anderson
for assistance with the e-scope setup, to Karen Byrum and to Jean-
Francois Genat.

REFERENCES:
Arkin, Herbert and Raymond R. Colton. Statistical Methods: As

Aplied to Economics, Business, Psychology, Education, and
Biology. Barnes&Noble, Inc. New York, 1966.

TDS3000B Series Digital Phosphor Oscilloscopes: User Manual.
Tektronix, Inc. <http://www.tektronix.com>

Yurtsev, Eugene. “Effects of Transmission Line Readout
Electronics on the Timing and Spatial Resolution Properties

of Chevron Type Micro-Channel Plate Photomultiplier
Tubes.” Department of Energy, SULI program. 1 Jun 2009.

Fig.1: Sample of waveform raw data from channels 1, 2, and 3. Pulser
rate at 1000Hz, light level at ~300phe

Fig 2: Data calculations from the java program. Note the difference in
rate dependence between channels 1 and 2, which are the top- and

bottom- readouts of the TL, respectively, with the rate dependence in
the non-TL MCP

	ABSTRACT:
	INTRODUCTION:
	HIGH LEVEL OVERVIEW
	METHOD: Data Acquisition
	METHOD: Pulse Initialization
	METHOD: Pulse Description
	METHOD: AUTOMATION
	METHOD: DISPLAY
	FURTHER IMPLEMENTATION
	SAMPLE APPLICATION:
	ACKNOWLEDGEMENTS:
	REFERENCES:

