Baptiste Joly

Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 CLERMONT-FERRAND, France

University of Chicago, July 15, 2010

Outline

In-beam Positron Emission Tomography for treatment verification in hadrontherapy Hadrontherapy

Real-time monitoring of ion ballistic Interest of Time-Of-Flight PET

2 Technological factors determinig time resolution

Detection process Experimental set-up Comparison of scintillators Comparison of timing algorithms Outline

Introduction

- Hadrontherapy is raising interest for the treatment of certain tumors.
- Need for treatment verification systems.
- Positron Emission Tomography is a promising technique for this application.
- Instrumentation development is required to adapt the technique.
- Time Of Flight (TOF): a key point for performance, and a technological challenge.

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

1. In-beam PET for treatment verification in hadrontherapy

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Hadrontherapy

A technique for inoperable and radioresistant tumors

surgery only	22%
radiotherapy only	12%
surgery and radiotherapy	6%
inoperable and radioresistant	18%
chemotherapy	5%
palliative treatment	37%
	surgery only radiotherapy only surgery and radiotherapy inoperable and radioresistant chemotherapy palliative treatment

- Cancer: 2nd cause of death in the West.
- \approx 18% of localized tumors are both:
 - Inoperable, close to organs at risk.
 - Radioresistant for conventional radiotherapy.
- Hadrontherapy is suited for those tumors because of the properties of ion-matter interaction.

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Hadrontherapy

Ionisation properties and biological effect

Dose distribution:

- Photons, electrons: dose decreases with depth.
- lons: maximum at Bragg peak.
- Dense ionisation in the trajectory ⇒ high biological efficiency.
- During a treatment, the energy is modulated ⇒ Spread-Out Bragg Peak (SOBP).
- Effective dose profile for several ions:
 - Dose (SOBP) > dose (entrance plateau).
 - Tail: radioactive fragments.
 - Carbon: adapted to hadrontherapy.

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Hadrontherapy

Operation

- · Passive shaping:
 - Lateral scattering.
 - Energy dispersion.
 - Compensator: modulates energy.

Active shaping:

- Magnetic deviation: lateral scanning (x y).
- Energy modulation: depth scanning layer by layer.

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Hadrontherapy

Nuclear fragmentation

- Collisions ions nuclei of the bio. medium \Rightarrow fragmentation (\approx 50% of C ions at 300 MeV/u).
- \Rightarrow Prompt and slow activity.
- Abrasion-ablation model:
 - Collision with impact parameter b.
 - Abrasion: formation of a "fireball", target and projectile fragments.
 - Ablation (ou evaporation): de-excitation, emission of n, p, γ .
 - Radioactive nuclei produced.
- Dispersion of dose after Bragg peak.
- Possibility to detect γ or β^+ activity \Rightarrow PET.

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

Detecting β^+ activity to control the ion ballistic

P. Crespo 2005, PosGen simulation.

• Fragmentation $\Rightarrow \beta^+$ nuclei,

- Projectile fragments: activity concentrated at the end of the traject.
- Target fragments: spread the activity.
- ¹¹C predominant (T=20 min).

(-)	
radionuclide	half-life
¹¹ C	20.4 min
¹⁵ O	2 min
¹² N	11 ms
¹⁰ C	19.3 s
⁸ B	770 ms

- Activity correlated with dose, maximal at Bragg peak.
- \Rightarrow In-beam PET.

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

- β^+ annihilation: two 511 keV γ photons emitted back to back $\approx 180^{\circ}$.
- Coincidence detection (if $|t_1 t_2| < \text{time window}$).
- Recording of a line of response (LOR).
- · Parasitic events:
 - Scattered pairs (30-40% of annihilation pairs).
 - Random pairs, high rate for in-beam PET (nuclear γ).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

- β^+ annihilation: two 511 keV γ photons emitted back to back $\approx 180^{\circ}$.
- Coincidence detection (if $|t_1 t_2| < \text{time window}$).
- Recording of a line of response (LOR).
- · Parasitic events:
 - Scattered pairs (30-40% of annihilation pairs).
 - Random pairs, high rate for in-beam PET (nuclear γ).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

- β^+ annihilation: two 511 keV γ photons emitted back to back $\approx 180^{\circ}$.
- Coincidence detection (if $|t_1 t_2| < \text{time window}$).
- Recording of a line of response (LOR).
- · Parasitic events:
 - Scattered pairs (30-40% of annihilation pairs).
 - Random pairs, high rate for in-beam PET (nuclear γ).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

- β^+ annihilation: two 511 keV γ photons emitted back to back $\approx 180^{\circ}$.
- Coincidence detection (if $|t_1 t_2| < \text{time window}$).
- Recording of a line of response (LOR).
- · Parasitic events:
 - Scattered pairs (30-40% of annihilation pairs).
 - Random pairs, high rate for in-beam PET (nuclear γ).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

- β^+ annihilation: two 511 keV γ photons emitted back to back $\approx 180^{\circ}$.
- Coincidence detection (if $|t_1 t_2| < \text{time window}$).
- Recording of a line of response (LOR).
- · Parasitic events:
 - Scattered pairs (30-40% of annihilation pairs).
 - Random pairs, high rate for in-beam PET (nuclear γ).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

- β^+ annihilation: two 511 keV γ photons emitted back to back $\approx 180^{\circ}$.
- Coincidence detection (if $|t_1 t_2| < \text{time window}$).
- Recording of a line of response (LOR).
- · Parasitic events:
 - Scattered pairs (30-40% of annihilation pairs).
 - Random pairs, high rate for in-beam PET (nuclear γ).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

- β^+ annihilation: two 511 keV γ photons emitted back to back $\approx 180^{\circ}$.
- Coincidence detection (if $|t_1 t_2| < \text{time window}$).
- Recording of a line of response (LOR).
- · Parasitic events:
 - Scattered pairs (30-40% of annihilation pairs).
 - Random pairs, high rate for in-beam PET (nuclear γ).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

- β^+ annihilation: two 511 keV γ photons emitted back to back $\approx 180^{\circ}$.
- Coincidence detection (if $|t_1 t_2| < \text{time window}$).
- Recording of a line of response (LOR).
- · Parasitic events:
 - Scattered pairs (30-40% of annihilation pairs).
 - Random pairs, high rate for in-beam PET (nuclear γ).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

Experience on in-beam PET at GSI, Darmstadt

Example: BASTEI (GSI)

- Two blocks from a commercial camera (ECAT EXACT, CTI).
- System modified to stamp the events:
 - Beam on (1500 cps) \Rightarrow noise.
 - Beam off (200 cps) \Rightarrow reconstruction.
- Verification after the irradiation.

Necessary developments

- Geometry (sensitivity, artefacts).
- Rejection of randoms, beam on.
- "Real-time" verification (<session).

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

Treatment verification process at GSI

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

Real-time monitoring of ion ballistic

In-beam PET: a challenge

Limits of BASTEI-like systems

- Low β^+ activity
 - Clinical PET, radiotracer: 10-100 kBq cm⁻³.
 - In-beam PET: 200 Bq Gy⁻¹ cm⁻³ \Rightarrow a few kBq cm⁻³.
- β⁺ activity is rapidly "washed out" by metabolism (≈4 min) ⇒ "in-beam" acquisition necessary.
- In hadrontherapy, the nb. of irradiation fractions tends to 1 ⇒ verification must be done during one fraction.
- Hight parasitic activity (γ , neutrons, p, e⁻).
- The new beams are continuous, i.e. without "macro" pause ⇒ the acquisition must be synchronized with beam at ns time scale to reject parasitic prompt particles (≈ 1 ns after fragmentation).
- Benefits of Time-of-Flight:
 - · Better exploitation of the low statistics,
 - Better rejection of parasitic particles.

In-beam Positron Emission Tomography for treatment verification in hadrontherapy

L Interest of Time-Of-Flight PET

Time of Flight: principle and benefit

- $t_1 t_2 \Rightarrow$ localization along the LOR
 - Time resolution Δt ,
 - Localization $\Delta x = c/2 \Delta t$,
 - Example 500 ps \longrightarrow 7.5 cm.
- Better rejection of randoms.
- Better image quality by reducing the coupling btw. voxels:
 - Smaller statistical noise (factor D/Δx),
 - Example: whole body PET,
 - $\Delta x = 7.5 \text{ cm}, D = 40 \text{ cm},$
 - \Rightarrow Improvement factor F = 5.
 - Reconstruction: faster convergence.
- Time of flight is the industrial state of the art of recent clinical PET systems.

L Technological factors determinig time resolution

2. Technological factors determinig time resolution

L Technological factors determinig time resolution

Detection process

Detection process

- L Technological factors determinig time resolution
 - Detection process

Inorganic scintillators for PET

Scintillation mechanism

- Photoelectric or Compton interaction.
- Secondary ionisations in cascade.
- Excitation of luminescent centres.
- Radiative de-excitation 400-500 nm, decay time=some 10 ns.
- Random emission times ⇒ statistical limit to time resolution.

Candidate materials

name	attenuation length	PE	light vield	decay time
	511 keV (mm)	(%)	(ph/keV)	(ns)
LSO	11.4	32	30	40
LYSO	12		32	41
LPS	14.1	29	20	30
LuAP	10.5	30	11	18(90%)
LaBr ₃ (h)	22.3	13.1	70	16
$LaCl_3$ (h)	28.0	14.7	46	25(65%)
Lul ₃ (h)	18.2	28	95	24(60%)

drawbacks (h): hygroscopic advantages

- Technological factors determinig time resolution
 - L Detection process

Photodetectors: today

Photomultiplier tubes (PMT)

- Only photodetectors used in clinical PET until now.
- Advantages: fast, high gain.
- Drawbacks: dimensions ⇒ block detector with position "decoding".

Detector block

- Light sharing btw. 4 PMT,
- Position reconstructed from charge ratios,
- Light loss and propagation path limit time resolution.

L Technological factors determinig time resolution

L Detection process

Compact photodetectors

Micro-Channel Plate Photo Multiplier Tubes (MCPPMT)

- + High gain (10⁵-10⁶),
- + Very fast response,
- Cost of commercially available models,
- Aging.

Avalanche Photo-Diode(APD)

- + High quantum efficiency (70-80%),
- + Low cost,
- Noise,
- Low gain (50-200).

Geiger-mode APD matrices (SiPM)

- + High gain $(10^5 \cdot 10^6)$,
- + Fast response,
- Noise,
- Stability T° and V_{pol} .

L Technological factors determinig time resolution

Detection process

Signal read-out

L Technological factors determinig time resolution

L Detection process

Digital front-end concept

Avantages compared to analog circuits

- Generic scheme,
- Reconfigurable,
- Versatile,

- Stability: baseline shift correction,
- Piled-up events can be handled.

- L Technological factors determinig time resolution
 - Experimental set-up

Two detectors in coïncidence

- Channel 1: "fast", reference channel, LaBr₃ (16 ns, 63 ph/keV).
- Channel 2: "test channel", here LYSO (41 ns, 32 ph/keV).

- Fast PMTs (rise \approx 700 ps).
- Oscilloscope Bandwidth=4 GHz, Sampling Rate=10 GSps.
- Algorithm \Rightarrow event energy and time.

- Technological factors determinig time resolution
 - Experimental set-up

Data Processing

- L Technological factors determinig time resolution
 - Experimental set-up

Data Processing

- L Technological factors determinig time resolution
 - Experimental set-up

Data Processing

- Event selection on energy $(\pm 2.5\sigma)$.
- First measurement: LaBr₃ on both channels, fwhm₁₋₁ = 237 ps.
- Second measurement: LaBr₃ on ch1, LYSO on ch2, fit gives fwhm₁₋₂.
- Meaningful figure: coincidence resolution for 2 detectors like ch2 fwhm₂₋₂ =

 $\sqrt{2 \times \text{fwhm}_{1-2} - \text{fwhm}_{1-1}}$.

- L Technological factors determinig time resolution
 - Comparison of scintillators

Crystal shape and reflector

- Test channel 2: LYSO crystal of different shapes and surface state.
- In each case, we measure:
 - Time resolution,
 - Peak of amplitude distribution ∝ nb of photoelectrons *n*,
 - Light yield is normalised by the best configuration, n₀.
- Time resolution is normalised by $\sqrt{n_0/n}$.

din	nensions	reflector	relative nb. of	t-resolution	fwhm ₂₋₂ (ps)
length	coupled		phe ⁻	measured	normalized
(mm)	area (mm²)		n/n_0		$\times \sqrt{n/n_0}$
4	4×22	white painting	1	339	339
4	4×22	none	0.82	384	348
4	4×22	black paint.	0.22	626	292
22	4×4	white paint.	0.43	461	304
22	4×4	none	0.56	436	328
22	4×4	Teflon tape	0.77	359	315
22	4×4	aluminum sheet	0.39	450	283
22	5×5	Teflon	0.83	368	336
2	2 × 10	white paint.	0.93	299	288
10	10×10	white paint.	0.99	350	348

L Technological factors determinig time resolution

Comparison of scintillators

Correlation between light yield and time resolution

- Relation in $1/\sqrt{n}$ confirmed.
 - No extra effect of light propagation time in long crystals.

L Technological factors determinig time resolution

Comparison of scintillators

Comparison of LaBr₃ crystals with increasing cerium concentration

% Ce	relative nb.	t-res. fwhm ₂₋₂ (ps)		
	of phe ⁻	measured	normalized $\times \sqrt{n/n_0}$	
5	1	255	255	
10	1.11	236	249	
20	1.30	160	182	
30	0.62	194	152	

- Rise time decreases with increasing Ce concentration.
 - Light yield changes must be corrected for.
 - Normalized t-resolution is improved.
 - Problem: high Ce concentration makes the crystal brittle.

- Technological factors determinig time resolution
- Comparison of timing algorithms

Timing algorithms

Leading Edge Discriminator (LED)

- Search the time when signal crosses threshold.
- Fine time by interpolation.
- Sensitive to amplitude fluctuation.

Constant Fraction Discriminator (CFD)

- Search the time when bipolar signal crosses ground level.
- Insensitive to amplitude fluctuation.

- L Technological factors determinig time resolution
 - Comparison of timing algorithms

Results

- Results very similar with dLED / dCFD.
- Cause: amplitude fluctuation ≪ shape fluctuation.
- Optimal threshold \approx 6-8%.
- Time reconstructed by least squares fit of the pulse with a reference shape: $fwhm_{2-2} = 552 ps.$
- The time information is carried by the initial part of the rising edge (first photoelectrons).

- L Technological factors determinig time resolution
 - Comparison of timing algorithms

signal (a.u.)

Effect of low-pass filtering

- Optimal low-pass filtering c ≈ 5: little improvement.
- Results degrade if frequency cut (3dB) < 1GHz.

L Technological factors determinig time resolution

Comparison of timing algorithms

Effect of sampling rate and ADC resolution

- Signal is downsampled at freq. *F*/*n*.
- Strong dependence at *F* < 1.5 GSps.
- Little improvement beyond.
- Curve interpolation useful when $F \approx 1$ GSps.

- 5 bits are enough.
- 4 bits at F = 10 GSps.

- L Technological factors determinig time resolution
 - Comparison of timing algorithms

Conclusions

- In-beam TOF PET \Rightarrow instrumentation challenge.
- Time resolution is limited fundamentally by the scintillation process:
 - Light yield and time constants are crucial.
 - The information is carried by the first photoelectrons.
 - T-resol. $\propto 1/\sqrt{n}$ (nb. of phe⁻) \Rightarrow a gain is possible on light collection efficiency and photodetector quantum efficiency.
- MCPPMT development is promising for PET: large area, fine position reconstruction, high gain and fast response.
- The recent developments in fast sampling electronics make possible a TOF PET system with digital signal readout.
- Simple and performant algorithm proposed: low-pass filter and constant fraction discriminator, with ajusted parameters.

- L Technological factors determinig time resolution
 - Comparison of timing algorithms

Perspectives

- In-beam measurements at GANIL ion cyclotron, Caen, France (first experiment done, analysis soon):
 - Count rates ?
 - β^+ emitter production rate ?
 - Possibility to discriminate β⁺ and prompt γ events ?
 - Specifications for a dedicated electronics ?
- · Collaborations involving Clermont-Ferrand:
 - National scale: GdR MI2B / WP9 Contrôle de dose en ligne (in-beam dose monitoring).
 - 7th European Framework Prog. / ENVISION European NoVel Imaging Systems for ION therapy.
 - Large Area PhotoDetector (LAPD) project, use of Micro-Channel Plate PMTs.

Technological factors determinig time resolution

Comparison of timing algorithms

Thank you for attention